在匿名信任协议中经常使用的并行求幂。 我们规定指数长度在32位和2048位之间变化。基数的长度是固定的,本例中是1024位。软件运行在嵌入式Linux操作系统上,并在多精度算法中使用了GMP库。 处理器和IP内核都以相同速度(100MHz)运行。我们发现,两种方法的执行时间都随指数长度成比例的增加。然而,采用硬件卸载方式的运算要快10至50倍。
市场上有多种IP内核可以用来执行单次模幂运算。然而,像DAA或Idemix等协议要求至少两次这种求幂的产品。这意味着我们仍然必须执行大操作数的多次(模)乘法,这将进一步增长总的执行时间。另外,我们希望能够改变所有操作数的长度,但不显著降低性能。也许我们还希望在其它平台上测试硬件。 这份希望清单促成了开源IP内核的设计,并符合以下规范:
● 针对嵌入式平台的开源IP内核(控制要求的软件)
● VHDL代码独立于器件和制造商,并得到良好归档
● 基数g0、g1和模数m的长度可以在综合前自由选取
● 为指数准备了一个FIFO,因此e0和e1的长度可以完全取决于控制软件
● 将流水线式蒙哥马利乘法器作为IP内核的核心,并具有自由选择的级长,从而允许调整内核获得想要的速度/面积
● 操作数RAM专门针对并行求幂进行了优化
并行求幂
最直接也是高效的模幂运算方法是通过重复平方和乘法运算获得最终结果。这种方法很容易扩展到并行求幂运算。下面就是这种算法的描述,其中Mont()表示蒙哥马利乘法。这是一种用硬件执行模乘运算的有效方法,我们对此还将进一步讨论。我们假设R2 (= 22n ,n是m的长度)可以通过控制软件提供甚至计算。仔细观察这个算法可以发现,采用要么运行单次乘法(用于预运算和最终乘法)要么自动运行主环的方式只实现一个乘法器并实现控制逻辑是合理的设计选择。 遵循标准的设计思路,我们将IP内核实现为存储器映射的外设。内核行为可以通过驱动软件使用控制寄存器改变(图4)。由于主环要求4个操作数,因此需要提供内存进行存储。中断线允许硬件就某些事件提醒处理器。 普通32位总线接口可以很容易扩展到多种流行的总线标准,如AXI或Wishbone。下面给出了最终设计的框图(n代表操作数的宽度)。
模乘
现在我们的工作将简化为设计一个乘法器,并且它能根据我们的需要方便地进行定制。当操作数长度大于512位(对我们的应用来说这是显然的情况)时,一种被称为脉动阵列蒙哥马利的乘法器(2)是最有效的实现。此外,它很容易转换成硬件,从而简化生成通用描述的任务。Mont(x,y)可以通过计算x的每一位的中间结果(a)进行运算。因此在经过n位后,乘法运算就完成了。a的每一位都可以用加法器和乘法器进行运算,最后一起形成脉动阵列单元(图5)。当大量单元级联时,为了中断进位链,我们将它们组成级。这样我们就可以控制设计的最大可达到频率,而这个频率主要受限于这个进位链。另外,还允许流水线运算。作为蒙哥马利算法一部分的右移操作可以确保a永远不会大于n+2位。
对于大的n来说,整个IP内核只使用另外一小部分FF和LUT比如用于控制逻辑和总线接口。然而,它也需要多个RAM单元来存储操作数。 执行乘法的时钟周期数也取决于n和k:
不过如前所述,级数——因此这些级的长度——对乘法器的最大可达时钟频率也有影响。这可以从图7看出来(n=2048)。
1.我们预先知道我们的工作频率。然后就足以选择级数以便让时钟频率至少能那么高。选择更多的级数只会导致耗用更多的资源(触发器)。
2.尽量缩短运算时间。这将由级数和最大时钟频率来确定。如果我们认为设计将在这个频率运行(理论上),我们可以获得下图所示的运算时间(n=1536)。我们可以看到,对我们的器件(Virtex 6)来说,当级长为4位时可以获得最短运算时间。
基于NFC的ZKPK
作为第一次实际测试,我们实现了基于NFC的简化Schnorr ZKPK,详见我们的嵌入式测试平台介绍。这种个嵌入式平台是验证方,而PC(连接有PN532电路板)用作证明方。 下表给出了不同操作数长度下的时序结果。很明显,当使用我们的硬件IP内核时,操作数长度对总的协议时间基本上没有影响。增加操作数长度会稍稍增加通信时间(这是预料中的)。然而,验证所需的时间将大大增加。 我们需要指出的是,通信占总时间的很大一部分。像产生随机数等一般数据操作也需要一定的时间。然而,我们的IP内核还无法克服这些挑战。
软件控制方案对比全自动操作
实现完整的并行求幂内核是一个英明的决策吗?为什么不只是乘法器和一些控制软件来实现算法1?因为我们可以将我们的IP内核用作乘法器,我们能够非常容易的测试它。我们可以在相同的系统上比较这两种方法。 即使我们将操作数存储在IP内核的RAM中(因此没有额外的总线业务量),全自动操作的速度仍要比软件控制方案快一个数量级(见图2)。这是意料之中的。Linux不是一种实时操作系统。在操作系统处理中断之前,或者应用程序访问它们需要的资源(本例中为我们的存储器映射外设)之前,可能需要等待一定的时间。如果你知道一次求幂要求大约(7/4)t乘法(见算法1),这种“损失时间”会很快累加起来。 如果你知道将乘法器转变成并行求幂内核所需的额外逻辑只由FIFO和一些计数器组成,那么我们可以说额外的硬件是比较值得的。 小结和未来发展 我们已经表明,这种用于模并行求幂运算的IP内核的可定制VHDL设计是非常适合匿名信任加密系统的嵌入式实现的。我们已经见证了如何调整内核参数来满足用户的需要。 除了更为理论性的性能分析外,我们还在实际的嵌入式装置中使用了这个设计。作为我们未来工作的一部分,我们将继续为匿名信任证书开发完整的嵌入式应用程序。 进一步开发对象还将导向内核本身。目前内核只提供PLB接口。提供对AXI和Wishbone接口的支持“已经列在任务清单上”。 包括所有乘法与求幂技术文档和测试基准的完整VHDL设计已经在开源网站OpenCores上公开上线。只要有GNU较宽松通用公共许可(LGPL)协议就能免费下载VHDL源代码。 项目的网页地址:http://opencores.org/project,mod_sim_exp 原文作者:Geoffrey Ottoy、Bart Preneel、Jean-Pierre Goemaere、Nobby Stevens和Lieven De Strycker