图1:典型的现代电流测量系统中的信号链。
图2:导体周围磁场、线性开环霍尔效应传感器和闭环传感器示意图。
《电子技术设计》网站版权所有,谢绝转载 {pagination} 闭环电流传感器 为了解决霍尔传感元件的非线性问题,业界开发出了另外一种技术。这种技术依赖于检测传感磁芯中磁场的有无或符号,而不是测量这种磁场的强度。另外,它能避免由于霍尔元件中不稳定的励磁电流引起的测量误差。 这种技术是在磁芯上增加一个绕组,用于产生符号相反的磁场,但强度与待测电流产生的磁场完全相等。现在霍尔传感元件仅用于检测磁场符号而不是磁场强度。这个绕组连接在有运放的电路中。该电路维持这种补偿绕组中的电流并使霍尔传感器感知到的磁场为零。补偿绕组中的电流要比待测导体中的电流小许多倍(也许超过1000倍),这个功能只需在制作绕组时在磁芯上多绕几匝就可以实现,而且匝数可以得到精确控制。 鉴于补偿绕组在运放反馈环路中的作用,这种电流传感器经常被称为“闭环”传感器。相反,前述简单的线性霍尔效应传感器经常被认为是“开环”传感器,以便强调在它们的工作过程中不存在反馈机制。 在霍尔效应器件中,不能将检测零磁场时的(偏移)误差减小到任意小的值,这是由于各种漂移、而且大多数是由于温度相关性漂移的原因。这也是为何一些较高性能的电流传感器采用的技术不依赖于霍尔效应的原因。然而,这些传感器一般仍被称为霍尔效应传感器,这只是因为它们在外观上与霍尔效应器件十分相似罢了。 其它磁场检测器 在非霍尔器件中,有些基于各种物理现象的传感器可以用来执行磁场检测器的功能。其中一种技术基于的是磁阻效应,即当向传感器施加一个磁场时,传感器的电阻会发生变化。 另外一种磁场检测器用的技术利用了铁氧体在磁场强度(用H表示)、磁通量密度(用B表示)和一种被称为饱和的特殊现象之间所呈现出来的非线性属性。当H场增加时,磁通量密度B最终将达到一个不再显著增加的点——这个点被称为饱和点。一些特殊配方做成的材料具有非常低的饱和点,它们被广泛用于称为磁通门的器件。 事实上,一个基于磁通门的传感器可以将一个恒定的磁场转换成一个在满量程和几乎零之间交替变化的“选通式”或“削砍式”磁场。这种磁场变化可以很容易地被磁芯上的一个绕组拾取到,然后经交流放大器进行放大。最后使用所谓的同步检测(因为电路本身会控制削砍动作)技术恢复出正比于待测恒定磁场的值。 值得注意的是,这种传感器的机械结构和相关电路的复杂性远高于闭环传感器。另外,它们的工作难度很高——当传感器没有获得能量,或者由于与外部检测电阻的松散连接导致补偿绕组电路开路的条件下进行电流测量——经常导致偏移和增益指标的不可恢复。由于补偿绕组不能抵消来自待测电流的磁场,这种传感器中的磁性元件将会永久磁化。 需要精密电阻 闭环传感器的输出信号就是补偿绕组中的电流(它的值要比待测电流小许多倍)。这个电流通常要被转换成电压值,再作进一步处理和数字化。这时只需使用普通电阻即可。 然而,这种电阻的精度和稳定性将直接影响闭环电流传感器的精度和稳定度。如果使用1%精度的检测电阻,那么基本精度规定为0.0001%的闭环传感器很快会降低到1%精度。 但购买到一定商用数量且精度高于0.01%的电阻是很难的,即使它们只是工作在很窄的温度范围内。 大电流分流 如前所述,第二种电流测量技术采用电阻上的压降。在根据欧姆定律确定电流时,需要考虑一组独特的因素,具体跟电流大小有关。对于相对较小的电流,分流电阻上的压降可以做得相当大,以克服由于检测连接和分流电阻的散热原因或源自工作环境形成的温差造成的任何误差。然而,当电流超过50A时,热量散发和热电误差是最重要的。同样,由于分流电阻总是会被流过的电流加热,并且可能工作在温度不稳定的环境中,分流电阻阻值相对于温度的稳定性就显得尤其重要。 分流器的物理组成 初看起来分流器件是一个简单的电阻。一些在体积电阻率、(温度和时间)稳定性和合适机械外形方面具有适当属性的导电材料可以用作分流电阻。低精度的分流电阻可以完全是一段长度的导线或用合适的合金构建的矩形形状,并简单地与载流导体串联焊接(或以某种电气连接)在一起。然而,将这样的分流元件插入测量电路而不影响其阻值几乎是不可能的(由于存在连接点焊料数量的变化,或连接机械细节方面的变化)。 另外,基于稳定性的原因,以分流电阻任何给定横截面内的电流密度大部分均匀的方式排列分流电阻是非常有益的。这样能防止形成所谓的热点——定义为温度比材料其它部分更高的分流电阻内部区域。除了简单的电阻变化外,热点处上升的高温可能将阻性材料带到退火点温度,在这个温度点(通过仔细控制化学成分和处理实现的)材料阻值可能开始永久改变。 即使热点的实际存在不会影响精度,但在校准分流电阻时不可能确保它们在完全相同的地方形成。因此分流电阻的设计包括了在阻性材料的横截面上、或在单个并联阻性部分和每个部分内部之间平均分配电流的方法。 这正是大多数较高精度的分流电阻由三个不同部分组成的原因:两个区域是端子,用于接入电路(几乎总是用厚的高导电率材料做成,比如铜),另外一个区或多个并联区组成了分流电阻的大部分。两个端子区之间用电阻段或使用焊接或冶金工艺的段进行连接,具有非常均匀的接缝。 精密分流电阻的阻性部分(也称为有效部分)材料必须具有对温度依赖性低的阻抗特性。由于具有合适的电阻和低温电阻系数(TCR),用于精密分流电阻的最常见合金之一是Edward Weston(因开发出电化学电池—韦斯顿电池而出名)于1892年开发的锰铜。 《电子技术设计》网站版权所有,谢绝转载 {pagination} 分流电阻中的散热 电阻散发的热量正比于电流的平方和电阻(W = I2 × R)。举例来说,一个1mΩ的分流电阻在流经50A电流时的功耗为2.5W,这个功耗在有适中散热器和静止空气条件下是一个可控的值。相反,当电流为1kA时,同样这个分流电阻将耗散1kW的热量,这个热量需要很大物理尺寸并且可能强制风冷(或液冷)的装置。
图3:分流电阻中散发的热量与电阻和电流之间的关系。
图4:分流电阻中散发的热量与满刻度输出电压和电流的关系。
选择正确的测量方法 对于测量大的直流电流来说,最基本的问题是测量精度和成本。其它重要的考虑因素包括:工作环境(尤其是温度范围),功耗,尺寸和耐用性(考虑可能的过载,瞬变和无激励工作)。为了判断任一给定方法的测量精度,考虑在所有相关的极端工作条件下所有可能的误差源很重要。 表1:电流分压器的比较。
《电子技术设计》网站版权所有,谢绝转载