广告

如何计算集成斩波放大器的ADC转换器的失调误差和输入阻抗

2016-06-20 Miguel Usach 阅读:
模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。这种斩波技术可以用来最大程度地降低放大器的失调和闪烁噪声(1/f)。在斩波转换过程中,开关的电荷注入会引起电流尖峰,进而使施加于ADC输入端的电压产生方向不定(流入和/或流出)的下降或尖峰。压降与连接到ADC输入段的传感器的输出阻抗成比例。

简介

模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。有关这种斩波实现的例子,可参见AD7124-8 和AD7779数据手册。需要这种斩波技术来最大程度地降低放大器的失调和闪烁噪声(1/f),因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。通过斩波,放大器的1/f和失调转换到较高频率,如图1所示。gh3ednc

2016JUN20_AP-PA_ANALOG_TA_01.jpggh3ednc

                                   图1.闪烁噪声(1/f)与斩波

在斩波转换过程中,开关的电荷注入会引起电流尖峰,进而使施加于ADC输入端的电压产生方向不定(流入和/或流出)的下降或尖峰。压降与连接到ADC输入段的传感器的输出阻抗成比例。gh3ednc

平均电流值

一般而言,数据手册不会提供电流峰值,因为它难以测量,而且不会增加任何有意义的信息。该信息之所以无意义,是因为缓冲器的斩波频率高于ADC的输入信号带宽。因此,输入引脚上添加的低通滤波器(用来消除高于奈奎斯特频率的频率或信号音,或用来降低耦合噪声)会对峰值电流进行平均,如图2所示。gh3ednc

2016JUN20_AP-PA_ANALOG_TA_02.jpggh3ednc

                                    图2.输入电流与时间的关系

用电流表测量输入电流,一端连接到VDD/2,另一端连接到ADC的模拟输入引脚。gh3ednc

如果电流表连接到其中一个电压轨,由于输入电压裕量的关系,测得的电流可能高于数据手册中的规格值。gh3ednc

输入电流与输入阻抗的关系gh3ednc

输入阻抗规格对精确计算直流误差没有帮助,因为与ADC内部输入阻抗引起的负载效应相比,输入偏置电流是最主要的贡献因素。gh3ednc

有两个规格与输入偏置电流相关:绝对电流和差分电流。gh3ednc

绝对值(IABSOLUTE)是在任意模拟输入引脚测得的输入电流。差分输入电流(IDIFFERENTIAL)是在模拟输入引脚对之间测得的电流差。这仅适用于差分输入ADC。gh3ednc

如何计算直流误差

输入电流产生一个失调电压(VOFFSET),后者与连接到输入引脚的阻抗直接相关。gh3ednc

如图3所示,产生的失调电压一般为:gh3ednc

2016JUN20_AP-PA_ANALOG_TA_03.jpggh3ednc

                                    图3.漏电流引起的压降

如果用运算放大器等低阻抗源驱动模拟输入引脚,误差将不很明显。gh3ednc

ADC测得的误差取决于施加的输入信号类型,例如是真差分输入信号还是伪差分/单端输入信号。gh3ednc

对于真差分输入信号,假设输入电阻(R)完全匹配,那么ADC测得的误差将是由模拟输入引脚对之间的差分输入电流引起,如下式所示:gh3ednc

VADC = V ± IDIFFERENTIAL × Rgh3ednc

VADC = V ± IDIFFERENTIAL × Rgh3ednc

其中,VADC为ADC输入电压。gh3ednc

《电子技术设计》网站版权所有,谢绝转载gh3ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 打造下一代家用机器人:精心构建智能化、集成化和电源优 ​​​​​​​今天的家用机器人不仅仅是工具,它们已经成为人们的生活伙伴,为日常生活增添了便利性和互动性。设计这些结构紧凑、功能强大的机器需要克服连接性、电源和外形尺寸等方面的严峻挑战,每一次突破都使我们更接近全面集成的智能家居体验···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了