广告

用欠压保护(UVP)电路保护可充电电池

2016-06-30 Peter Demchenko 阅读:
许多种类的可充电电池可能因深度放电而损坏。本设计实例中的电路提供的欠压保护功能(UVP)可防止这种情况的发生,并可用作负载开关。这种电路几乎不用任何修改就可以适用于电压从4.5V至19V的几乎所有类型电池。电路的待机电流小于1µA。

许多种类的可充电电池可能因深度放电而损坏。本设计实例中的电路提供的欠压保护功能(UVP)可防止这种情况的发生,并可用作负载开关。这种电路几乎不用任何修改就可以适用于电压从4.5V至19V的几乎所有类型电池。电路的待机电流小于1µA。u7Eednc

与P沟道器件相比,高侧N沟道MOSFET Q2可以降低成本。导通和关断天生是软开关,因此可以避免开关时的尖峰。u7Eednc

20160630C01u7Eednc

               图1:这个电路是为20℃条件下采用凝胶电解液的12V铅蓄电池设计的。
                    其它类型的蓄电池可能要求修改元件值。

工作原理

电池/蓄电池第一次连接到+Acc,电路是关断状态。C3放电,因此可编程参考二极管TL431A(D1)将关断,漏电流小于1µA。电路中的所有其他单元都处于非激活状态,Q2关断,因为它的栅极会经R5放电。u7Eednc

在此状态下,电路等待On输入端的激活正向脉冲——通过一个按钮或其他控制器提供。在此脉冲期间,TL431A导通,为配置为振荡器的TLC555提供电源。该振荡器通过C2和D3在Q2的栅极电容上产生自举电压,使Q2导通。u7Eednc

在On信号消除后,电路仍维持激活状态,因为来自分压器R1-R2的电压会给C3充电,从而维持从D1到Q2再回到D1的环路。u7Eednc

当/Off输入端信号变低,或达到欠压启动点时,电路断开负载,并将自己关断。u7Eednc

启动点的表达式为:u7Eednc

Vt = (1 + R1/R2) Vref (Vref就是TL431的2.5V参考电压)u7Eednc

因此 R1/R2 = Vt/ Vref - 1u7Eednc

为了使Iref (最大值4µA)的影响可以忽略不计,要使流经分压器的电流至少100倍于Iref:u7Eednc

R1 + R2 ≤ 30kΩu7Eednc

因此对于10.8V的启动点电压来说,计算得到:u7Eednc

R2 = 30kΩ / (Vt / Vref) = 6.94 kΩu7Eednc

R1 = 30kΩ - R2 = 23.06 kΩu7Eednc

TL431A的参考电压Vref公差是1%,因此R1和R2的公差应该要好于这个指标,以尽量避免降低启动点精度,或者也可以增加一个微调点。u7Eednc

作为一个有益的经验,电流Iref应该小于绝对最大额定值10mA的一半。因此:u7Eednc

R6 ≥ VOn/ 5mAu7Eednc

R6的上限定义为:u7Eednc

Vref = (R1 || R2) Vt / (R6 + (R1 || R2))u7Eednc

R6 ≤ (R1 || R2) (Vt / Vref - 1)u7Eednc

因此, R6 ≤ 17.8kΩu7Eednc

如果你选择的R6值接近这个极限,你就能在蓄电池耗尽时禁止任何开启负载的企图。/Off输入端的优选级比On要高。u7Eednc

开关Q2之后是电池电压监测电路,因此低的RDS(on)是电路正确工作的关键。u7Eednc

当具有大的负载电流时,应该尽可能减少开关次数,以减少功耗。为了在导通期间给Q2的栅极电容Cg快速充电,振荡器频率应该要高一点(本例中大约是900kHz)。为了快速关断,R5的值不能太高:这个关断时间取决于R5 × Cg。u7Eednc

当电路处于非激活状态时,Q1可以防止Q2的栅极通过D2和D3连接到+Acc。具有中等增益(30-150)的任何PNP晶体管(比如2N2904)都可以使用。具有较高增益的晶体管(如BC556-BC560)可能要求减小R4的值,以便在电路关断状态下确保Q1也是关断的。不过Q1应该被流经555的电流可靠导通;在接近上限频率的条件下工作并使用小阻值的R3可确保R4上有足够的压降。u7Eednc

低功耗齐纳二极管D4应该根据Q2的VGS(max)作出选择。u7Eednc

Q2主要参数的选择与系统有关。因为Cg用作滤波电容,因此也需要多加注意。2nF到10nF范围的取值应该足够了;更大的电容可能要求增加C2的值。根据经验,C2的取值范围是从Cg到2Cg。C2的值对导通时间也有影响。u7Eednc

《电子技术设计》2016年7月刊版权所有,谢绝转载。u7Eednc

20160630000123u7Eednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 微通道液冷是什么?它又能如何优化电子设计 小型电子设备在冷却方面面临着独特的挑战。尽管随着芯片功能的增加,热管理问题日益受到关注,但设备尺寸越小,留给传统散热器的空间就越小。而微通道液冷领域的最新突破可能会改变这一现状···
  • 热泵背后的技术:智能功率模块 热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核心力量,运行所需的电力具有低排放的特点。在与传统锅炉、低排放氢能以及其他可再生能源和常规建筑系统相比时,能效是评估热泵的关键因素···
  • 关于电动汽车是否真的更有优势,我有一些话想说 大众媒体一遍又一遍地强调电动汽车的优势,但我本人对这些说法深表怀疑···
  • “源”察秋毫,基于纳米发电机的高熵能源微弱信号测试 基于纳米发电机的高熵能源可以很好实现能源的供给。未来,在能源互联网、智能电网、物联网、互联网、生物医学、无线通信和无线传感等领域,纳米发电机都将有更广泛应用···
  • 电动压缩机设计-SiC模块篇 电动压缩机是电动汽车热管理的核心部件,除了可以提高车厢内的环境舒适度(制冷,制热)以外,对电驱动系统的温度控制发挥着重要作用,对电池的使用寿命、充电速度和续航里程都至关重要···
  • 东芝第3代SiC肖特基势垒二极管产品线增添1200 V新成 东芝电子元件及存储装置株式会社(“东芝”)今日宣布,最新推出第3代碳化硅(SiC)肖特基势垒二极管(SBD)产品线中增添“TRSxxx120Hx系列”1200 V产品,为其面向太阳能逆变器、电动汽车充电站和开关电源等工业设备降低功耗···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了