广告

优化RS-485实现最小电磁干扰和最低功耗

2017-04-19 Mark Wagner 阅读:
RS-485的使用已有一些时日,但因其信令、电压水平及实现的简单性, 迄今它仍是一种可用的网络技术。很多工程师常选用未针对具体应用进行优化的现成方案,所用部件超过实际所需的尺寸,如功耗更高的终端电阻,使EMI问题更加严重。本文讨论了几个关键因素可以帮助工程师迅速而精准地选对正确的方案,还提出了可增强设计性能的简单技巧。

虽然RS-485的使用已有一些时日,但因其信令、电压水平及实现的简单性, 迄今它仍是一种可用的网络技术。工业传感器也因为这些原因仍然在使用这种接口。由于RS-485不是最近出现的标准,很多工程师都选择使用现成的方案,这些方案并未针对具体应用进行优化,达不到人们期望的性能要求。结果,所用的部件超过实际所需的尺寸,如功耗更高的终端电阻,使EMI问题更加严重。本文所讨论的几个关键因素,可以帮助工程师迅速而精准地选对正确的方案。有关这个主题已经有许多著名的白皮书。本文补充了一些遗漏的细节,并提出了可增强设计性能的简单技巧。anzednc

DI1_F1_201705

图1:基本RS-485拓扑anzednc

anzednc

电磁干扰问题

有三种基本工具可以帮助设计师管理电磁干扰(屏蔽技术将在文章的最后单独说明)。anzednc

1.器件速度
2.收发器工作电压
3.端接电阻电流anzednc

速度

使用的波特率不要超过实际应用的要求,包括收发器的速度。收发器有不同的速度选项,它们会影响信号的上升/下降时间。举例来说,许多RS-485链路的速度在1Mbps以下,因此像TI的SN75HVD12DR这样的器件就是一种好的选择。对于128kbps速度的链路来说,速度低一些的Intersil器件就足够。anzednc

这些器件上升时间较慢(例如100ns), 但对这些应用来说已经足够,可以最大程度地减少电磁干扰辐
射。因为响应速度较慢,也降低了对附近噪声源的敏感度。请仔细阅读收发器的规范说明,因为许多标准器件将运行在10Mbps或更快的速度下,比这些链路通常所需的速度快得多。anzednc

DI1_T1_201705

表1:RS-485收发器及其速度举例anzednc

anzednc

电压

电磁干扰幅度与任意信号的电压摆幅成正比,因此减小电压摆幅可以减小因连接而产生的电磁干扰。许多较新器件的额定工作电压是3.3V,可以满足RS-485信号标准的最低要求。在今天的许多系统设计中,3.3V要比5V更常用。如果使用更低的电压,我们需要放弃什么?在这个电压下,器件的速度和抗噪声能力可能会下降。但如果器件的额定速度满足要求,并且使用了屏蔽措施,那么3.3V的RS-485信号通常足够。需要重申的是,是否需要考虑所有相关条件并查阅数据手册,取决于设计师。为了抵抗浪涌,要在收发器输入端增加一个电容以避免出现信号劣化,除非计算出来的频率响应是信号速率(1/2波特率)的5-10倍。anzednc

RS-485的工作电压范围很宽,从200mV接收阈值到10V最大差分信号。2V峰-峰值通常是推荐的最小驱动电平,3.3V器件满足这个条件,同时又能很好地与5V供电器件连接, 因而能提供合理的信噪比,
特别是对较短距离的通信来说。记住,如果你需要高速(5MHz以上),那么你可能需要5V电源,请查阅相关的数据手册。anzednc

电流

电磁干扰问题本质上就是磁性问题,因此流经端接电阻的电流被认为是引起电磁干扰的一个因素。磁性干扰比较难控制,因为铜的相对磁导率大约为1,不管附近是否有屏蔽都可能引起干扰电路的耦合。较低的瞬态电流可以减少磁性特征,最大限度地减小与邻近其它电路的耦合。anzednc

我们如何做到这点呢?难道端接电阻值不是固定的吗?是的,只要线缆的“电长”相对于信号边沿速率来
说足够,它就不是固定的。没有规定说不能为了工程上的其它理由而增加这个值。若关心的主要问题是敏感度而不是辐射,这个终端电阻的阻值就越小越好。不过仍然需要进行折衷,如同其它所有工程设计那样。比较5V/120Ω系统和3.3V/499Ω系统就能发现,电流可以减小至1/6。anzednc

终端电阻

大多数人最初知道的电阻默认值是120Ω,分别跨接在网络远端的(+)和(-)数据端子上。但120Ω并不总是最好的选择,选用这个原始终端原本就是为了匹配商用双绞线阻抗。不管什么样的应用,即使短距离应用,也不要考虑不接终端电阻,因为它能提供很好的抗噪声能力。需要端接的理由有两个:anzednc

电缆的“ 电长” 足够, 能满足2·tp≥tr/5,其中tp是信号沿电缆单向传输的时间,tr是来自指定驱动器
的信号上升时间(10%-90%;请参考后面根据速度因子计算的信号传输时间)。如果电缆的“电长”不够,那么在调整终端(Rt)值时就可以更加灵活。这是选用慢速驱动器来满足应用要求的另一个理由。anzednc

敏感度: 如果没有任何端接,SN75HVD12DR的接收器输入阻抗(单端)估计在109kΩ左右(基于最大输
入电流指标和引脚上的12V电压)。这么高的输入阻抗很容易受到PCB或电缆内邻近信号的串扰(如果屏蔽层内的电缆超过一对)。通过并联端接电阻可以降低这个阻抗值,最大程度地减小串扰,但代价是功耗会增大。建议做适当的折衷,永远不要放弃“免费的”抗噪声性能,一定要包含一定数值的终端。anzednc

优化端接电阻

需要回答的第一个问题是: 电缆的“电长”够吗?然后我们就能确定是否需要将电阻Rt与电缆阻抗匹配。回答这个问题可以从上面的等式2·tp≥tr/5开始。anzednc

加入前面驱动器的上升时间可以得到2·tp≥100ns/5,这样就得到了最大10ns的信号传输时间tp。这意味着从驱动器到对端电缆末端所需时间不到10ns(在到达第一个端接电阻之前)。接下来根据电缆电介质(及其速度因子)计算如何将这个要求转换为电缆长度。速度因子是信号沿着导体/电介质传播的速度与光在真空中传播速度之比。anzednc

VF(速度因子)=1/√εr
(εr=相对介电常数或介电常数;例如,聚乙稀,εr=2.25)anzednc

因此速度=c·VF或c/√εranzednc

例子:百通公司规定#9841电缆的速度因子为66%(绝缘体是聚乙稀,由上述公式计算得到66.6%)。如果没有规定VF,可以查找介电材料,然后用上述公式计算。anzednc

先计算电缆的最大长度(使用上面的100ns驱动器和10ns最大tp),然后找出与电缆阻抗匹配的端接电阻:anzednc

DI1_E1_201705anzednc

DI1_E2_201705anzednc

合并两个公式后简化为:anzednc

DI1_E3_201705anzednc

或者采用纳秒和米作为单位:anzednc

DI1_E4_201705anzednc

低功耗考虑

在这个例子中,长度小于1.98m(比如嵌入式应用机箱)的电缆不需要与之相配的端接电阻。那么如何选择Rt呢?可以不使用。然而如前所述,阻值较低的电阻可以减小敏感度。499Ω是一个好的起始值。对于5V信号,当电阻从120Ω变为499Ω时,每个电阻的静态功耗将从208mW下降到50mW。与无端接情况相比,这种做法有助于降低功耗和敏感度,从而实现鲁棒的通信链路。anzednc

对于非电池驱动的应用,我们为什么还要关心功耗呢?SMT元件在设计中已经变得非常小。一个0603
电阻的额定功率是100mW,若降额因数为50%,留给我们用的功率就只有50mW。499Ω的0603电阻满足要求,而208mW的原始设计需要1210尺寸的电阻。更高阻值的电阻有助于减小设计尺寸, 并使链路更加鲁棒。3.3V/499Ω信号则允许使用0402的端接电阻。anzednc

低功耗也意味着3.3V或5V电压轨可以不用电荷泵稳压器,这样可以减少器件数量,从而降低总成本。举例来说,凌力尔特公司的LTC3255可以采用4-48V直流输入,但输出限制为50mA。anzednc

管理共模电压

虽然RS-485是一种差分网络,但要想正确工作,必须满足有限共模(CM)电压限制要求。这意味着如果它们彼此呈悬浮态,则从一个节点到另一个节点需要一条地线。共模电压可能来自数字信号(使用二极管/电容),但一般来说它不抗噪。为了控制从一个模块到另一个模块的噪声,可以在地线上串联一个电
感。这样不仅可以通过任一根数据线控制直流共模电压,还能最大限度地减小射频回流。通常1μH的电感就可以提供很好的保护,因为它的阻抗在200MHz频率时超过1kΩ,但又不会因太高而干扰1Mbps或以下的通信。也可以采用共模扼流圈来提供额外的射频保护。anzednc

屏蔽

控制电磁干扰并不是说所有接地都悬浮于大地之上。一般来说,屏蔽层(如果用的话)的一端会连到末端的信号地或具有地线的节点,而屏蔽层的另一端则处于悬浮状态。在有可能发生严重磁性干扰的情况下,可能要求将屏蔽层的两端都接地。当电缆长度超过10m时,远端的屏蔽接地将被转换为“软地”(使用电容),以便通过屏蔽层(连接远程地)最大限度地减小低频干扰。使用电压源和寄生电容的噪声模型连接在相对地、导体和屏蔽层之间,这是一种明智的做法。图2中为基本的屏蔽构建了噪声模型。anzednc

DI1_F2_201705

图2:基本屏蔽结构的噪声建模anzednc

anzednc

总结

RS-485实现了能够对抗电磁干扰的简单网络,但在应用中必须理解各种选项,并运用合理的工程原理。在众多选项中, 不要简单地选用自己见过或用过的器件。市场上不断推出新器件,应综合考虑传输长度、器件速度、功耗要求以及将使用的电缆类型再做出选择。正确的选择有助于设计的最后成功。anzednc

《电子技术设计》2017年5月刊版权所有,谢绝转载。anzednc

20160630000123anzednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了