广告

滤波器低通到高通转换,这样处理就行了!

2017-09-06 阅读:
滤波器一般用低通原型进行描述,因为低通是标准配置。如何将低通极点转换成高通极点?

关于极点

受原点零值的影响,其直流响应并不平坦,而是n ×(20 dB/十倍频程)的上升响应,其中n为极点数。在转折频率条件下,受极点影响,上述上升响应会增加n × (–20 dB/十倍频程)的响应。结果是,在转折频率以外,会呈现平坦的响应。P9Fednc

以1/s缩放传递函数,可将低通原型转换成高通滤波器。P9Fednc

实际上,这通常相当于将电容变成值为1/C的电感,而对于无源设计,则相当于将电感变成值为1/L的电容。对于有源设计,电阻变成值为1/R的电容,而电容则变成值为1/C的电阻。这仅适用于频率设置电阻,不适用于增益设置电阻(即并非适用于电路中的每个电阻或电容)。P9Fednc

一种转换算法

考察转换的另一种方式是研究s平面的转换。低通原型的复数极点对由一个实部α和一个虚部β构成。归一化高通极点通过以下公式算出P9Fednc

015denc20170906P9Fednc

以及P9Fednc

016denc20170906P9Fednc

这样,一个简单的极点α0转换成P9Fednc

017denc20170906P9Fednc

低通零点(ωZ,LP)通过以下公式转换P9Fednc

018denc20170906P9Fednc

此外,原点处将增加与极点数量相等的零点。P9Fednc

在将归一化低通原型极点和零点转换成高通之后,接着以与低通相同的方式(即以频率和阻抗)进行反向归一化处理。P9Fednc

作为例子,此处转换的是一个1 kHz、3极点、0.5 dB切比雪夫滤波器。选择切比雪夫滤波器的原因在于,如果响应不正确,它可以更清楚地显示出来;这种情况下,巴特沃兹则可能过于宽松。选择3极点滤波器是为了分别转换一个极点对和单个极点。P9Fednc

极点位置

低通原型的极点位置来自设计表。P9Fednc

表1P9Fednc

019denc20170906P9Fednc

第一级为极点对,第二级为单极点。请注意,用α表示两个完全不同的参数的做法是不可取的。左侧的α和β为复平面上的极点位置。这些是转换算法中使用的值。右侧的α为1/Q,这正是物理滤波器设计等式所希望看到的。转换结果将产生如表2所示结果。P9Fednc

表2P9Fednc

020denc20170906P9Fednc

这里需要提醒一下,由于描述切比雪夫滤波器的一种习惯做法(即此处所用做法)是引用误差带的末端而非3 dB频率,因此,F0必须除以(高通)纹波带与3 dB带宽的比值。P9Fednc

用Sallen-Key高通拓扑结构来构建滤波器,原理图见图1。P9Fednc

021denc20170906
图1. 高通转换P9Fednc

图2所示为低通原型和高通转换的响应。请注意,它们在1 kHz截止频率左右是对称的。还应注意,0.5 dB误差带位于1 kHz,而不是−3 dB点,这是切比雪夫滤波器的一个特征。响应的对称性验证了转换的精度。P9Fednc

022denc20170906
图2. 低通和高通响应P9Fednc

从低通到高通滤波器的转换,上述算法你get到了么?P9Fednc

(来源:亚德诺半导体)P9Fednc

20160630000123P9Fednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了