广告

选择合适的电池电量计,实现高精准度的电池建模

2017-10-24 Nazzareno (Reno) Rossetti,Baku 阅读:
穿戴式设备正在推动一个极具吸引力且成长快速的市场,其中智能手表(Smart Watch)持续保持主导地位。有鉴于消费者则需要其设备具有最精确、最长的电池运作时间,因此本文讨论与电池容量管理关键功能密切相关的要求,并提出一种能够克服挑战的颠覆性技术。

穿戴式设备正在推动一个极具吸引力且成长快速的市场,其中智能手表(Smart Watch)持续保持主导地位。在这种密集且竞争激烈的环境下,每一个制造商都力争将产品率先投入市场,而消费者则需要其装置具有最精确、最长的电池运作时间(图1)。本文讨论与电池容量管理关键功能密切相关的要求,并提出一种能够克服挑战的颠覆性技术。FNLednc

Battery_F1_20171024

图1:智能手表发出充电完成的讯号。FNLednc

FNLednc

上市时间的挑战

最佳的电池性能依赖于驱动电量计算法的高精准度及高质量电池模型。花费大量时间进行客制的特性分析能够获得高精准度的电池性能、最小化电池电量(SOC)的误差,以及正确预测电池何时接近没电的状态。FNLednc

储存在电池中的能量(以mAhr为单位)依赖于多种参数,如负载和温度。因此,开发者必须在各种条件下对电池进行特性分析。在选取了与电池行为一致的模型后,即可将其装载到电量计芯片。这种严密的监控过程能够实现更安全的电池充电和放电。FNLednc

由于电量计特性化只能满足大量生产的客户,不能顾及所有其他客户,不仅带来了上市时间的问题,也成为制造商发展的阻碍。传统上,IC供货商专注于高产量的应用,因为模型选取通常需要大量的实验室工作,而只有少数IC供货商拥有所需的资源。FNLednc

电池运作时间的挑战

较差电池模型所带来的严重后果之一就是运作时间估算不准确。典型的智能手表使用模型在为期1天的循环过程中,包括5小时主动状态(包括对时、通知、app使用、音乐播放、通话,以及训练)和19小时被动状态(仅对时)。为期1天的循环中,如果装置在主动模式下的功耗为40mA,在被动模式下的功耗为4mA,那么将消耗总共276mAh,正好是典型智能手表电池的大约容量。为避免装置操作的非预期或过早中断,就必须准确预测电池运作时间。FNLednc

运作时间的持续时间也同样重要。被动模式下,同一电池可能维持长达69小时(276mAh/4mA)。功耗为50μA的典型电量计将缩短大约52分钟的电池被动运作时间,是不可忽略的时间量。FNLednc

EZ解决方案

Maxim Integrated开发了一种算法,能够准确估算电池的充电状态,且能够安全地运用在大多数电池上。该算法在研究了常见锂电池特性后开发。FNLednc

ModelGauge m5 EZ算法(简称EZ)采用针对具体应用的电池模型,嵌入到电量计IC内部。设计师利用评估套件所提供的简单组态精灵,可产生电池模型。系统设计师只需提供三条讯息:FNLednc

1.容量(通常会显示在电池卷标或数据表); 
2.没电时所对应的电池电压为(依赖于应用情形);
3. 电池充电电压(是否高于4.275V)。

使用EZ,系统设计师不再需要执行特性分析,因为这实际上已由电量计供货商完成。FNLednc

包含在EZ算法中的多种适应机制能够帮助电量计学习电池特性,进一步提高精准度。这样的算法可保证电池电压接近没电时,电量计输出收敛到0%,因此,电量计能够在电池电压达到没电的同时准确指示SOC为0%。FNLednc

如果我们假设SOC预测的系统误差预算为3%,EZ模型能够覆盖95.5%的放电测试用例——非常接近人工定制模型的性能,后者覆盖97.7%的测试用例。如图2所示,当电池接近没电时,EZ方法的表现也是一样的,这点特别重要。FNLednc

Battery_F2_20171024

图2:EZ系统误差性能。FNLednc

FNLednc

对于许多使用者来说,仅知道SOC或剩余电量是不够的,他们真正想知道的是剩余电量可提供多少运作时间。最简单的方法,例如将剩余电量除以当前或预期负载,可能会造成估算结果过于乐观。EZ算法能够根据电池参数、温度、负载效应,以及应用的空电压,提供精准度高出很多的剩余运作时间估算结果。FNLednc

有了EZ算法,大产量的制造商可将EZ作为快速开发的起始点;在具有运作雏型之后,即可选择精细调谐过的电池模型。而小产量的制造商可利用EZ为电池建立配对模型,并可以兼容绝大多数电池。FNLednc

采用ModelGauge m5 EZ的单电池电量计

EZ算法被内建到MAX17055独立式单电池电量计IC中。装置拥有0.7μA关机电流、7μA休眠模式电流和18μA运作电流,可理想用于电池供电的穿戴式装置,还可透过I2C接口存取数据和控制缓存器。FNLednc

系统误差的竞争产品分析

图3所示为系统误差的竞争产品分析。从柱状图可以看出,接近电池没电时,MAX17055在大多数测试用例(26个中的15个)下的误差在1%以内。FNLednc

Battery_F3_20171024

图3:系统误差的竞争产品分析。FNLednc

FNLednc

运作时间精准度竞争优势

接近没电时的低误差可确保电池电量最佳的使用,最大程度延长运作时间,以及最小化操作装置的非预期或过早中断。FNLednc

运作时间延长竞争优势

使用具有低静态电流的电量计IC,可有效延长运作时间。MAX17055的静态电流为18μA,比最相近竞争装置的静态电流低64%。此外,在低功耗休眠模式下,装置仅消耗7μA电流。将其应用到以上讨论的情况,可将受影响的运作时间从52分钟降低到7分钟——实质性的性能改善。FNLednc

总结

本文重点讨论了有效率的电量计系统中电池建模的重要性,以最大化电池运作时期的精准度和持续时间,还探讨了取得高精准度电池模型的障碍,这一障碍将延长上市时间、影响低产量电池应用的扩散。MAX17055内建一种以ModelGaugem5EZ算法为基础的颠覆性方法,使电池系统开发更快速、更简单、更具成本效益,并为广泛的应用提供更好得电池性能。FNLednc

作者:Nazzareno (Reno) Rossetti,Maxim Integrated资深作者;Bakul Damle,移动电源事业管理部总监。FNLednc

20160630000123FNLednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 打造下一代家用机器人:精心构建智能化、集成化和电源优 ​​​​​​​今天的家用机器人不仅仅是工具,它们已经成为人们的生活伙伴,为日常生活增添了便利性和互动性。设计这些结构紧凑、功能强大的机器需要克服连接性、电源和外形尺寸等方面的严峻挑战,每一次突破都使我们更接近全面集成的智能家居体验···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了