广告

国内大多选燃油车做无人驾驶原型车,为何国外却大多选混动?

2017-11-06 周彦武 阅读:
现在的无人车大多是用量产车改装的,但选什么样的量产车改装可是有学问。国外的大多选混动,国内的大多选燃油车,这是为什么?

我们来看Waymo,也就是谷歌最早用丰田的普锐斯,然后换雷克萨斯的RX450h,最后是克莱斯勒的混动版大捷龙。苹果也是选择了雷克萨斯的RX450h。英伟达的BB8、百度的Apollo样车、瑞萨、Udacity、Voyage、Pony.ai、景驰、PlusAI、Roadstar.ai都选择了混动版林肯MKZ,也就是混动版福特蒙迪欧。o4Zednc

008ednc20171106o4Zednc

009ednc20171106o4Zednc

010ednc20171106o4Zednc

这是一个很有趣的问题。原因很简单,混动车使用制动系统是EHB,也就是电子液压制动,而燃油车除了阿尔法罗密欧的Giulia外都是使用ESP做线控制动。这两者貌似功能差不多,实际相差很大。o4Zednc

首先我们来简单了解一下汽车制动系统。 o4Zednc

制动系统的基本原理是踩下刹车踏板,储液壶的刹车油进入刹车总泵(主缸),主缸活塞向刹车油施加压力,根据帕斯卡原理不可压缩静止流体中任一点受外力产生压力增值后,此压力增值瞬时间传至静止流体各点。o4Zednc

根据帕斯卡定律,在水力系统中的一个活塞上施加一定的压强,必将在另一个活塞上产生相同的压强增量。如果第二个活塞的面积是第一个活塞的面积的10倍,那么作用于第二个活塞上的力将增大至第一个活塞的10倍,而两个活塞上的压强相等。o4Zednc

第一个活塞就是主缸活塞,第二个就是轮缸活塞,轮缸活塞的直径反而比主缸活塞直径要大。刹车油将压力通过管路传递到每个车轮的轮缸上,轮缸中的刹车油推动刹车卡钳的活塞向刹车盘运动,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。一般来说自重5吨以下的车都是采用液压制动,5吨以上的采用气压制动。o4Zednc

ESP与ABS非常接近,与ABS最大的不同在于ESP可以在没有踩刹车踏板的情况下向轮缸输出制动压力,ABS只能在踩下刹车踏板后从主缸向轮缸输出压力。压力生成器就是电机和柱塞泵, 与ABS比多了4个柱塞泵,4个电磁阀,也就是VLV和USV。 o4Zednc

011ednc20171106o4Zednc

博世第九代ESP增加了两个特殊功能,一个是ACC,自适应巡航,ESP可以部分控制电子节气门。o4Zednc

另一个是AEB,ESP可以部分控制制动系统。有些认为ESP既可以控制油门又可以控制制动,是个很好的线控系统,非也。o4Zednc

通常ESP制动力度最大大约为0.5-0.8g,标准的制动力度在1G,0.5g远不够用。o4Zednc

再次,在设计之初,ESP控制制动系统只是在少数紧急情况下使用,可能1年用不了2次,一般泵的容量只有3毫升,每一次使用,柱塞泵都要承受高温高压,频繁使用,会导致柱塞泵发热严重,精密度下滑,导致ESP寿命急剧下滑,常规制动系统1小时就可能使用数次,如果用ESP做常规制动系统,可能1个月就报废了。o4Zednc

最后即便是不计寿命问题,ESP的泵油功率有限,且缺乏真空助力,反应速度较慢。最后如果ESP真的可以做常规制动,那么博世也无需开发Ibooster,日立无需开发EACT,大陆无需开发MK C1,天合无需开发IBC。 o4Zednc

012ednc20171106o4Zednc

ESP(ESC)的全力制动时间长达520-550毫秒左右,而湿式EHB是200毫秒左右,iBooster可以达到120毫秒左右。ESP只能用于Demo,而国内大多也只是Demo,而国外是奔着量产去的,同时也有更高的安全性。o4Zednc

如何做到常规的线控制动,这就是EHB。EHB可以分为两种,一种是带高压蓄能器的,通常叫湿式。另一种是电机直接推动主缸活塞的,通常叫干式。混动型新能源车基本都是前者,后者的典型代表就是博世iBooster。o4Zednc

013ednc20171106o4Zednc

我们先来看带高压蓄能器的EHB,EHB的构成与ESP基本相同,只不过低压蓄能器换成了高压蓄能器。高压蓄能器可以一次建压,多次使用,而ESP的低压蓄能器,一次建压,只能使用一次。 o4Zednc

014ednc20171106o4Zednc

上图为丰田EBC的高压蓄能器,有点类似一个气压弹簧。高压蓄能器制造工艺是个难点,博世最初是用储能球,实践证明,氮气的高压蓄能器才是最合适的。o4Zednc

丰田第一个将EHB系统应用于量产车上,这就是1997年年底推出的第一代普锐斯,丰田将其命名为EBC。随后TRW也推出了EHB系统,TRW将其命名为SCB。今天福特的混动车基本都是SCB。 o4Zednc

015ednc20171106
上图为SCB原理图o4Zednc

EHB系统过于复杂,高压蓄能器怕振动,可靠性不高,体积也大,成本也高,寿命也受到质疑,维修成本巨高,最要命的是响应时间略长。o4Zednc

在2010年,日立推出了全球第一个干式EHB,也就是E-ACT,也是目前最先进的EHB,用在日产第一代聆风上,解决了大部分湿式EHB的弊病。E-ACT的研发周期长达7年,经过了近5年的可靠性检测。o4Zednc

直到2013年,博世才推出第一代iBooster,2016年推出第二代iBooster,第二代iBooster才达到了日立E-ACT的素质,日本人在EHB领域整整领先德国一代。实际上日本在机械制造领域遥遥领先德国,只是国人无法接受这个事实。o4Zednc

016ednc20171106
上图为第一代iBooster内部结构图,用涡轮蜗杆做两级减速来增加直线运动力矩。o4Zednc

特斯拉全线使用了第一代iBooster,还有大众全部的新能源车以及保时捷918都使用了第一代iBooster,通用卡迪拉克的CT6还有雪佛兰的Bolt EV也使用了第一代iBooster。o4Zednc

这种设计据说可以将95%的再生制动能量转化为电能,大大提高新能源车的续航里程。同时响应时间也比带高压蓄能器的湿式EHB系统缩短75%。 o4Zednc

017ednc20171106
上图为第二代iBooster,从二级蜗轮蜗杆改用一级滚珠丝杠减速,体积大幅度缩小,控制精度有所提高。o4Zednc

第二代iBooster有四个系列产品,助力大小从4.5kN到8kN之间,8kN可以用在9座小型客车上。目前第一代iBooster在波兰生产,第二代在墨西哥生产。 2017年8月1日,博世在南京投资7.7亿建设两条iBooster生产线,年产能200万套,预计2019年投产。o4Zednc

博世iBooster、日立的EACT、采埃孚的IBC、大陆的MK-C1是无人车的终极选择。不过目前iBooster应用最广也最成熟,EACT是日本人的,非常保守,只在日产上有使用,日产又绝不可能开放底层制动的通讯协议,MK-C1只有阿尔法罗密欧的朱丽叶使用,IBC要到2018年才有通用的量产车使用。o4Zednc

无论是燃油车还是电动车,都逃不出博世的魔爪,特斯拉也是全线使用博世的产品。据说为了保密,iBooster的装配不是在特斯拉工厂,而是在博世的工厂,特斯拉是将车送过去,装配好了再拉回来,此外特斯拉的毫米波雷达和转向系统也是博世的。o4Zednc

博世的底盘类产品就像三星的存储器,你再不高兴,也得用,也得讨好博世。o4Zednc

(本文转载自雷锋网,作者系佐思产研研究总监周彦武)o4Zednc

20160630000123o4Zednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 微通道液冷是什么?它又能如何优化电子设计 小型电子设备在冷却方面面临着独特的挑战。尽管随着芯片功能的增加,热管理问题日益受到关注,但设备尺寸越小,留给传统散热器的空间就越小。而微通道液冷领域的最新突破可能会改变这一现状···
  • 热泵背后的技术:智能功率模块 热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核心力量,运行所需的电力具有低排放的特点。在与传统锅炉、低排放氢能以及其他可再生能源和常规建筑系统相比时,能效是评估热泵的关键因素···
  • 没有优质探头,示波器 ADC 分辨率再高也无意义 为了实现准确的信号测量,示波器必须通过探头连接到被测电子电路。探头发挥着重要作用,能够确保到达示波器的信号无杂质、不失真,且尽可能接近电路中流通的原始信号···
  • 一个小改动,让铜线恒温器效率达94% 对于热线恒温器来说,虽然它也融合了传感器和加热器,但他们仍然与传递装置保持分离。因此,它在线性模式下工作时耗散的功率对加热没有任何贡献,被完全被浪费了,从而降低了效率···
  • 无需电力即可操控的机器人你见过吗? 最近,伦敦国王学院的研究团队取得了一项突破性进展,他们开发了一种无需电力即可向机器人发出复杂指令的新方法···
  • 2024诺贝尔奖公布,竟然有两项都颁给了AI? 诺贝尔奖被普遍认为是在世界范围内,所有颁奖领域内能够取得的最高荣誉,最近,2024年的诺贝尔奖获奖名单也陆续公布了出来,而在目前公布的奖项中竟然有两项都与人工智能相关···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了