广告

研究人员打造形变分子内存

2017-12-27 R. Colin Johnson 阅读:
美国加州大学柏克莱分校与国家实验室的研究人员正着手打造一种分子大小的形变内存技术,它只需要几个原子,就可以将0与1当做形状进行储存,而且能搭配未来的原子级处理器…

随着互补式金属氧化物半导体(CMOS)接近原子级,一种分子大小的形变(shape-changing)内存技术正日趋完善,从而可逆地改变二碲化钼(MoTe2)的晶格结构。V5iednc

根据美国加州大学柏克莱分校(UC Berkeley)教授兼罗伦斯柏克莱国家实验室(LBNL)材料科学处长张翔表示,这种途径仅需要几个原子,就可以将0与1当做形状进行储存,从而实现能够储存机械材质的固态内存,而且能够搭配未来的原子级处理器。V5iednc

该技术使用电子注入方式——而非依电荷、自旋或任何短暂数量来编码内存,而能够在可逆的过程中改变MoTe2的晶格结构。根据张翔解释,透过电刺激重新安排原子结构,改变了材料的特性,从而能使用较转移化学特性所需的更少能量来形成与感应0与1,或是像在相变(phase-change)内存中一样以热感应跃迁。V5iednc

实现这个过程的关键在于使用过渡金属二硫属化物(TMD)——在此情况下,MoTe2的原子级单层薄膜使其内部晶格结构得以透过在两稳态之间转移结构的电子脉冲加以改变。张翔连手其于UC Berkeley和Berkeley国家实验室的研究人员共同研究,在他们所使用的MoTe2薄膜例子中,两种稳定的晶格结构是对称的2H排列,与其相对的是1T结构。V5iednc

012ednc20171227
未来的内存可以采用电子注入方式,可逆地改变2D半导体的晶体结构。在两电极之间夹层一个原子级的MoTe2薄膜单层,并以储存电荷的离子液滴加以覆盖。 当施加较小的电压时,电子被注入,从而使其从对称(2H) 结构转变成倾斜的(1T)排列。(来源:LBNL)V5iednc

柏克莱的研究人员们目前正尝试使用各种不同的TMD作为目标材料,以实现其形变晶格结构的电子注入法,但MoTe2由于兼具可加以改变的电子和光子特性而较受青睐。研究人员的目标在于创造一个「设计薄膜」库,可用于计算机和光学应用,包括太阳能电池板。V5iednc

在2D、单层TMD薄膜中,能以电子方式改变电和光的特性,包括电阻、自旋传输,以及Berkeley研究方法所使用与相位有关的形状改变等。V5iednc

013ednc20171227
UC Berkeley教授兼LBNL材料科学处长张翔V5iednc

张翔表示,研究人员的验证概念使用了「静电掺杂」电子(而非原子),用于作为掺杂剂。而在以离子液体涂覆MoTe2单层之后,研究人员运用注入的电子掺杂剂以改变晶格的形状,据称能够打造出毫无缺陷的材料。由此所产生的1T结构是倾斜且金属的,使其易于与半金属结构的2H原子晶格排列方式有所区隔。透过施加较低电压以移除掺杂的电子,从而恢复了原始的2H结构。V5iednc

美国能源部(DoE)赞助了这项研究计划。DoE的基础能源科学办公室执行传输研究,而其能源转换先进研究中心(Energy Conversion Frontier Research Center;EFRC)的光物质互动(Light-Material Interactions;LMI)进行光学测量。DOE EFRC和美国国家科学基金会(NSF)透过装置设计和制造为该计划提供支持。中国的清华大学(Tsinghua University)提供了参考资料、史丹佛大学(Stanford University)的研究人员也做出了贡献。此外,还有来自陆军研究办公室、海军研究办公室、NSF和史丹佛大学研究生奖学金的资助。V5iednc

(原文发表于Aspencore旗下EDN姐妹媒体EETimes,参考链接:Berkeley Builds Shape-shifting Molecular Memory;Susan Hong编译)V5iednc

20160630000123V5iednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
R. Colin Johnson
EETimes前瞻技术编辑。R. Colin Johnson自1986年以来一直担任EE Times的技术编辑,负责下一代电子技术。 他是《Cognizers – Neural Networks and Machines that Think》一书的作者,是SlashDot.Org的综合编辑,并且是他还因对先进技术和国际问题的报道,获得了“Kyoto Prize Journalism Fellow”的荣誉。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 微通道液冷是什么?它又能如何优化电子设计 小型电子设备在冷却方面面临着独特的挑战。尽管随着芯片功能的增加,热管理问题日益受到关注,但设备尺寸越小,留给传统散热器的空间就越小。而微通道液冷领域的最新突破可能会改变这一现状···
  • 热泵背后的技术:智能功率模块 热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核心力量,运行所需的电力具有低排放的特点。在与传统锅炉、低排放氢能以及其他可再生能源和常规建筑系统相比时,能效是评估热泵的关键因素···
  • 一个小改动,让铜线恒温器效率达94% 对于热线恒温器来说,虽然它也融合了传感器和加热器,但他们仍然与传递装置保持分离。因此,它在线性模式下工作时耗散的功率对加热没有任何贡献,被完全被浪费了,从而降低了效率···
  • 无需电力即可操控的机器人你见过吗? 最近,伦敦国王学院的研究团队取得了一项突破性进展,他们开发了一种无需电力即可向机器人发出复杂指令的新方法···
  • 2024诺贝尔奖公布,竟然有两项都颁给了AI? 诺贝尔奖被普遍认为是在世界范围内,所有颁奖领域内能够取得的最高荣誉,最近,2024年的诺贝尔奖获奖名单也陆续公布了出来,而在目前公布的奖项中竟然有两项都与人工智能相关···
  • 关于电动汽车是否真的更有优势,我有一些话想说 大众媒体一遍又一遍地强调电动汽车的优势,但我本人对这些说法深表怀疑···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了