广告

铝电解电容为什么不能承受反向电压?

2018-02-24 阅读:
氧化铝层可以承受正向的直流电压,如果其承受反向的直流电压,其很容易在数秒内失效。这个现象被称为‘ Valve Effect ’,这就是为什么铝电解电容拥有极性的原因,如果电解电容的两个电极都有氧化层,则形成无极性电容。

下图显示了铝电解电容的基本结构,它由阳极( anode )、在绝缘介质上附着的氧化铝构成的铝层,接收极的阴极铝层,和真正的由电解液构成的阴极。电解液浸透在两个铝层间的纸上。 4c3ednc

氧化铝层是通过电镀在铝层上,相对于加在其上的电压来说是非常薄的,很容易被击穿,导致电容失效。4c3ednc

009ednc201802244c3ednc

氧化铝层可以承受正向的直流电压,如果其承受反向的直流电压,其很容易在数秒内失效。这个现象被称为‘ Valve Effect ’,这就是为什么铝电解电容拥有极性的原因,如果电解电容的两个电极都有氧化层,则形成无极性电容。 4c3ednc

许多文章报道了铝电解电容反向电压的阈值现象的机理,叫做氢离子理论( Hydrogen ion theory ),当电解电容承受反向直流电压的时候,即电解液的阴极承受正向电压而氧化层承受负电压,集合在氧化层的氢离子就将穿过介质达到介质和金属层的边界,转化成氢气,氢气的膨胀力使得氧化层脱落,因此电流在击穿电解液后直接流通电容,电容失效,这个直流电压非常小,在 1~2V 的反向直流电压作用下,铝电解电容在几秒钟就会因为氢离子效应而立即失效。 相反,当电解电容承受正向电压时候,负离子集结在氧化层之间,因为负离子的直径非常大,其并不能击穿氧化层,所以能承受较高电压。4c3ednc

名词解释:

1. 阳极( anode ):阳极铝层,即电解电容的正极。

2. 阴极( cathode ):电解液层。 

3. 电介质( Dielectric di ):附着在铝层表面的氧化铝层。 

4. 阴极箔( Cathode Foil ):连接电解液和外部的层,这层在制作中并不需要氧化,但是在实际中由于在蚀刻过程中铝容易被氧化,所以其形成了一个自然被氧化的氧化层,这个氧化层可以承受 1~2v 的电压。

5. 绝缘纸 (spacer paper): 隔离阴极和阳极,让他们不直接短接,并吸附一定量的电解液。 

有极性电容反接后会怎么样?

如果电容容量很小,耐压很高,工作电压低的话,反接看不出来啥;如果容量稍大(100UF以上),耐压离工作电压近,电容不会超过10分钟就坏,坏的表现形式是:先鼓包,再吹气,然后爆浆。4c3ednc

有极性电容器反接会爆炸,是不是说不能直接接在交流电源上?

不能接到交流电源上,因为这个有极性电容设计就是用在直流电源上,作滤波用,我原来也问过这种问题,想了好久,一直在问“电容不是隔直通交的吗,怎么有极性电容就不能用在交流电源上呢?”,因为这个有极性电容内部有特殊的物质,这个物质不能承受反压,如果通到交流电上就会反向击穿或爆炸。4c3ednc

有极性电容不能反接,为何允许交流负半周通过?

交流信号在一定条件下可以把电容当作短路,此时交流信号的负半周怎么解决?难道要上拉成直流? 4c3ednc

交流信号必须承载在直流电流上,正是要上拉成直流! 4c3ednc

有极性电容工作时正极电位一定要高于负极.否则电容漏电----轻则电路无法工作,重则电容爆炸。4c3ednc

极性电容接反为什么会短路?

极性电容内部结构分为正极、介质层、负极,介质层具有单向导电的性质,当然接反后产品介质层就起不到绝缘的作用了,电容自然就短路了。4c3ednc

为什么把电解电容器正负极接反时电阻率变小?

涉及到电解电容器的原理:正接时电容器的正极会形成极薄的氧化膜(氧化铝)来作为电介质;反接时金属铝薄片(电容正极)是接电源负极的,会电解出H2来而不会形成氧化膜,另一电极由于材料不同也不会形成可以作为电介质的氧化膜。 4c3ednc

铝电解电容器是由经过腐蚀和形成氧化膜的阳极铝箔、经过腐蚀的阴极铝箔、中间隔着电解纸卷绕后,再浸渍工作电解液,然后密封在铝壳中而制成的。 由于电解电容器存在极性,在使用时必须注意正负极的正确接法,否则不仅电容器发挥不了作用,而且漏电流很大,短时间内电容器内部就会发热,破坏氧化膜,随即损坏。 4c3ednc

电解电容是电容的一种,介质有电解液涂层,有极性,分正负不可接错。电容(Electric capacity),由两个金属极,中间夹有绝缘材料(介质)构成。电解电容器特点一:单位体积的电容量非常大,比其它种类的电容大几十到数百倍。 电解电容器特点二:额定的容量可以做到非常大,可以轻易做到几万μf甚至几f(但不能和双电层电容比)。 电解电容器特点三:价格比其它种类具有压倒性优势,因为电解电容的组成材料都是普通的工业材料,比如铝等等。制造电解电容的设备也都是普通的工业设备,可以大规模生产,成本相对比较低。电解电容器通常是由金属箔(铝/钽)作为正电极,金属箔的绝缘氧化层(氧化铝/钽五氧化物)作为电介质,电解电容器以其正电极的不同分为铝电解电容器和钽电解电容器。铝电解电容器的负电极由浸过电解质液(液态电解质)的薄纸/薄膜或电解质聚合物构成;钽电解电容器的负电极通常采用二氧化锰。由于均以电解质作为负电极(注意和电介质区分),电解电容器因而得名。 有极性电解电容器通常在电源电路或中频、低频电路中起电源滤波、退耦、信号耦合及时间常数设定、隔直流等作用。一般不能用于交流电源电路,在直流电源电路中作滤波电容使用时,其阳极(正极)应与电源电压的正极端相连接,阴极(负极)与电源电压的负极端相连接,不能接反,否则会损坏电容器。 4c3ednc

无极性电解电容器通常用于音箱分频器电路、电视机S校正电路及单相电动机的起动电路。电解电容器广泛应用于家用电器和各种电子产品中,其容量范围较大,一般为1~1000μF,额定工作电压范围为6.3~450V。其缺点是介质损耗、容量误差较大(最大允许偏差为+100%、-20%),耐高温性较差,存放时间长容易失效。4c3ednc

有极性电容和无极性电容在性能、原理结构上的区别.

有极性电容是指电解电容一类的电容,它是由阳极的铝箔和阴极的电解液分别形成两个电极,由阳极铝箔上产生的一层氧化铝膜做为电介质的电容.由于这种结构,使其具有极性,当电容正接的时候,氧化铝膜会由于电化反应而保持稳定,当反接的时候,氧化铝层会变薄,使电容容易被击穿损坏.所以电解电容在电路中必须注意极性.普通的电容是无极性的,也可以把两个电解电容阳极或阴极相对串连形成无极性电解电容. 4c3ednc

1、原理上相同。(1)都是存储电荷和释放电荷;(2)极板上的电压(这里把电荷积累的电动势叫电压)不能突变。(3)区别在于介质的不同、性能不同、容量不同、结构不同致使用环境和用途也不同。反过来讲,人们根据生产实践需要,实验制造了各种功能的电容器来满足各种电器的正常运行和新设备的运转。随着科学技术的发展和新材料的发掘,更优质、多样化的电容器会不断涌现。4c3ednc

2、介质不同。介质是什么东西?说穿了就是电容器两极板之间的物质。有极性电容大多采用电解质做介质材料,通常同体积的电容有极性电容容量大。另外,不同的电解质材料和工艺制造出的有极性电容同体积的容量也会不同。再有就是耐压和使用介质材料也有密切关系。无极性电容介质材料也很多,大多采用金属氧化膜、涤纶等。由于介质的可逆或不可逆性能决定了有极、无极性电容的使用环境。 4c3ednc

3、性能不同。性能就是使用的要求,需求最大化就是使用的要求。如果在电视机里电源部分用金属氧化膜电容器做滤波的话,而且要达到滤波要求的电容器容量和耐压。机壳内恐怕也就只能装个电源了。所以作为滤波只能使用有极性电容,有极性电容是不可逆的。就是说正极必须接高电位端,负极必须接低电位端。一般电解电容在1微法拉以上,做偶合、退偶合、电源滤波等。无极性电容大多在1微法拉以下,参与谐振、偶合、选频、限流、等。当然也有大容量高耐压的,多用在电力的无功补偿、电机的移相、变频电源移相等用途上。无极性电容种类很多,不一一赘述。 4c3ednc

4、容量不同。前面已经讲过同体积的电容器介质不同容量不等,不一一赘述。 5、结构不同。原则上讲不考虑尖端放电的情况下,使用环境需要什么形状的电容都可以。通常用的电解电容(有极性电容)是圆形,方型用的很少。无极性电容形状千奇百变。像管型、变形长方形、片型、方型、圆型、组合方型及圆型等等,看在什么地方用了。当然还有无形的,这里无形指的就是分布电容。对于分布电容在高频和中频器件中决不可忽视。 4c3ednc

功能上是一样的。主要区别是在容量上,受材料结构的影响,一般无极性电容的容量都比较小,一般在10uF以下,而极性电容的容量普遍较大。 比如在进行电源滤波的时候,你不得不使用大容量的极性电容。 4c3ednc

电路设计的一个基本原则就是要求设计者充分了解和掌握现实中的元器件,所用的元器件尽量是标准件,通用件,最好是市场上最普通的型号(元器件的通用性越好,采购越容易,供货商产量越大,采购成本越低)。对于图纸中所用元器件,要是只有定做才能获得的材料,其成本肯定不低。如果是定做都不能获得,那这张设计图就等同于废纸。 4c3ednc

PS:你说的只是电源退耦电容,大电容适合滤除低频信号,小电容滤除高频信号(原理见电路基础,容抗与频率的关系部分)。 4c3ednc

不过退耦仅仅是电容的一个作用,电容还有其他作用,不同种类的电容特性,用法都有很大差异,原理图上的电容只是一个符号而已,背后的技巧多着呢。这方面跟经验很有关系,不可能速成,只能通过实践慢慢积累。4c3ednc

纯交流电路中,只能使用无极性电容器。

在直流电压叠加交流信号的电路中,且能保证叠加后的最低电压不会成为负值,就可以使用有极性的电容器。 4c3ednc

在容量相同的情况下,有极性的电容器的体积和成本都远小于无极性的电容器,所以需要较大的电容量情况下,电容器的体积是一个较大的矛盾,能用无极性的电容器的场合,都自然会用有极性的电容器替代,不仅解决了体积问题,成本也低很多,何其不乐。4c3ednc

大电容可以滤除较低频率以上的交流信号,小电容则只能滤除较高频率以上的信号。需要多大的电容器,需要根据欲滤除信号的频率和需要滤除的分贝来确定。 4c3ednc

总的来说,在两个导体之间只要有电场存在就会在这两个导体间产生电容,而这个电容的容量有多大,跟两导体之间的电场强度、距离、电介质和电源的频率有关。在电子电路中,如果电压和频率、电容器的容量、电容器的“品质因数”以及安装条件已经设定不变的情况下,选用何种材质的电容器就成了决定性因素了。 4c3ednc

电容器在电子电路中主要是作;信号的偶合、RC电路中伏安特性的微分如积分、振荡电路中的“槽路”、旁路和电源滤波等。 4c3ednc

电容器的种类划分是按电容器里面的电介质来区分的:4c3ednc

1.空气电容器;用空气作电介质的电容器,如;收音机里面“调谐”用的可变电容器 

2.纸质电容器;用一种专用的电容纸做电介质的电容器。

3.电解电容器;用电解质作电介质的电容器。

4.云母电容器;用天然的云母作电介质的电容。

5.瓷片电容器;用单层陶瓷材料作电介质的电容器。 

6.独石电容器;也是用陶瓷材料作电介质的电容器,为了解决单层瓷片电容器容量小的缺点,实际就是用多个瓷片电容串联起来的电容器; 

7.涤纶功电容器;用尼龙材料作电介质的电容器。 

8.铌电容器;它用金属铌[ní]做正极,用稀硫酸等配液做负极,用铌表面生成的氧化膜做介质制成的一种电容器 

9.钽电容器;是一种用金属钽(Ta)作为阳极材料而制成的一种电容器。

10.绕线式电容器;是一种用金属丝绕在电介质上作电极的电容器,可用改变金属丝的匝数的办法来调整电极面积大小从而调整容量的大小。 

11.油浸纸质电容器;用一种中性砊物油来做电介质的电容器,多用在电力系统。     ...... 

电容器又分:固定电容、可变电容和可调电容三种。4c3ednc

大多是做成固定容量不变的。 4c3ednc

可变电容;可在一定的容量范围内自由调节的电容器,如;收音机里可以手动调谐选台用的那就是可变电容 4c3ednc

可调电容(也称半可变电容);在一定的范围内可调整的电容器,如;瓷介微雕电容和线绕电容。 4c3ednc

不能说“容量大的电容就有极性”,这点说错了,比如,用在电力系统中做相位角调整和用在启动电络中做消弧用的电容,容量有时做得很大,但是不分极性的。 4c3ednc

无极性电容和无极性电解电容器一样吗? 不是一回事。 4c3ednc

绝大多数种类的电容都是无极性的,唯独电解电容有极性,电解电容当中,又有很特殊的无极性电解电容。与普通电容相比,电解电容的容量大、价格低、体积小是其他电容无法比拟的,但是电解电容一般都有极性,而且工作可靠性、耐压、耐温、介质损耗等指标都不如其他电容。所谓无极性电解电容,实际上就是将两个同样的电解电容背靠背封装在一起。这种电容损耗大、可靠性低、耐压低,只能用于少数要求不高的场合。4c3ednc

(来源:硬件十万个为什么)4c3ednc

201606300001234c3ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 微通道液冷是什么?它又能如何优化电子设计 小型电子设备在冷却方面面临着独特的挑战。尽管随着芯片功能的增加,热管理问题日益受到关注,但设备尺寸越小,留给传统散热器的空间就越小。而微通道液冷领域的最新突破可能会改变这一现状···
  • 热泵背后的技术:智能功率模块 热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核心力量,运行所需的电力具有低排放的特点。在与传统锅炉、低排放氢能以及其他可再生能源和常规建筑系统相比时,能效是评估热泵的关键因素···
  • 关于电动汽车是否真的更有优势,我有一些话想说 大众媒体一遍又一遍地强调电动汽车的优势,但我本人对这些说法深表怀疑···
  • “源”察秋毫,基于纳米发电机的高熵能源微弱信号测试 基于纳米发电机的高熵能源可以很好实现能源的供给。未来,在能源互联网、智能电网、物联网、互联网、生物医学、无线通信和无线传感等领域,纳米发电机都将有更广泛应用···
  • 电动压缩机设计-SiC模块篇 电动压缩机是电动汽车热管理的核心部件,除了可以提高车厢内的环境舒适度(制冷,制热)以外,对电驱动系统的温度控制发挥着重要作用,对电池的使用寿命、充电速度和续航里程都至关重要···
  • 东芝第3代SiC肖特基势垒二极管产品线增添1200 V新成 东芝电子元件及存储装置株式会社(“东芝”)今日宣布,最新推出第3代碳化硅(SiC)肖特基势垒二极管(SBD)产品线中增添“TRSxxx120Hx系列”1200 V产品,为其面向太阳能逆变器、电动汽车充电站和开关电源等工业设备降低功耗···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了