广告

“无开销”DCR电流检测“功成身退”

2018-02-24 Ken Coffman,Intersil 阅读:
电源系统设计的挑战之一是电流检测。在降压转换器中,一种流行的“无开销”方法是DCR电流检测。但这种电路精度很低,尤其是使用小型、低ESR电感器时,因此将被其它方法取代,如电流检测电阻器,或功率链路器件。

降压转换器是最常见的电源拓扑,电源工程师深知其优点和缺点。电源系统设计的挑战之一是电流检测。在降压转换器中,一种流行的“无开销”方法是 DCR 电流检测。说它“无开销”,是因为这种方法不会使电源设计增加额外的成本或功耗,但人所共知的是,这种电路精度很低,尤其是使用小型、低ESR电感器时,更是这样。6LDednc

先来看看DCR检测电路的组成。这种电路足够简单:给输出电感器增加一个RC网络,生成差分信号就行了。RC网络将电感器电流转换成C1两端的电压。6LDednc

DI7-F1-201803

图1:DCR电流检测电路。6LDednc

6LDednc

RC值的计算足够简单,RC=L/DCR,其中:6LDednc

L = L1的电感值;
DCR = 电感器L1的DC电阻;
R = 图1原理图中的R2(或者,如果有R3存在,就是R2和R3的并联);
C = 图1原理图中的C1。6LDednc

请注意,在图1中,如果ISENSE峰值信号的幅度使差分放大器饱和,那么就增加R3,以降低该峰值信号幅度,使其处于差分放大器的规定范围内。6LDednc

“无开销”总是受欢迎的,但常言说得好,“便宜无好货,好货不便宜”。这种电路的精度非常差。6LDednc

首先,电感器的DCR有很宽的容限范围,± 7%甚至±10%是很常见的。6LDednc

DI7-F2-201803

图2:电感器DCR的典型规格。6LDednc

6LDednc

如果初始容限为10%,那么图1所示的180nH电感器的DCR可能低至261mΩ或高达319mΩ。雪上加霜的是,电感器会发热,铜线绕组的温度系数为3930PPM/ºC或0.393%/ºC。如果应用的温度上升至比环境温度高35ºC,电感器本身发热使温度再上升35ºC,那么标称DCR就可能升至:6LDednc

DI7-E1-2018036LDednc

最差情况的上限为:6LDednc

DI7-E2-2018036LDednc

最差情况的下限为:6LDednc

DI7-E3-2018036LDednc

(标称值增大15%。总误差会低些,因为铜线的正系数补偿了电感器的低初始值。)6LDednc

从工程设计的角度来看,这确实很糟糕,因为过流标记和过流停机都是基于这些电阻设定的。如果电路太敏感,就会在没有达到需要停机的程度就停机了。这不是我们想要的结果。如果电路不敏感,就会有电感器和功率FET压力过大的风险。这更不是我们想要的结果。6LDednc

情况能糟糕到什么程度?

假定正在设计一个能在1V时提供最大35A的电路(目前对一个切合实际的单相降压转换器而言,这个数值是合乎情理的)。如果电感器DCR处在容限低端,那么输出得到35A时,控制器认为提供了40A。这意味着,OCP不能设定为低于40A,否则电源会在标称负载时停机。反过来,当OCP设定为40A,电感器DCR增大10%时,情况会变得多糟糕?6LDednc

在这种情况下,实际负载电流为40A,但DCR为407µΩ,因此控制器认为输出电流是65A。这意味着,OCP需要设定为65A,如果不设定为这个数值,就有在不到40A时就出现OCP停机的风险。这似乎不能接受,可一旦OCP设定为65A,电路就必须设计成,在偶尔准确报告电流的情况下,也得连续提供这么大的电流。6LDednc

这意味着输出电感器和功率FET严重过度设计,电源必须提供35A,但却必须按照能够连续提供65A来设计。而且,使情况更糟的是,电感器中的电流除了有DC分量,还存在峰值至峰值纹波。这个纹波有多大呢?对纹波电流而言,通常的设计原则是20%。这意味着,逐周期限流值必须设定为高于65A,因此保护输出FET的能力就变得非常成问题了。猜猜看,如果针对30%纹波电流来设计,会发生什么情况?6LDednc

然后,你会意识到,典型的电流检测电压范围为10mV至20mV。如果在一个电源中,有开关节点振铃,有输出电感器产生的杂散磁场,还有电流在旁路电容器和输出电容器中流通,那么就很难得到可以接受的信噪比(SNR)。要想信号质量还有任何希望的话,电流检测连接线必须仔细布置成差分对(因此,所拾取的任何噪声都是共模的),并布置得远离电感器、开关节点和大电流/高频电流回路。这在空间受限的设计中是很难的,一如现在空间受限设计中的一切看起来都很难一样。6LDednc

DI7-F3-201803

图3:开尔文电感器电流检测布线。6LDednc

6LDednc

我们能做什么?首先,通过使用热敏电阻器或温度检测二极管(通常是小型晶体管中正向偏置的PNP基-射节),可以基于经验估计出电感器的温度。通过这种方式,可以调节铜线绕组电阻的热响应。这太有帮助了。工程师们真是太了不起了。如果我们确实做得非常仔细,那么最好的结果有可能达到±10%。6LDednc

我们还能做什么?我们可以忽略“无开销”的DCR电路,给输出电感器串联一个昂贵的、温度稳定的电流检测电阻器。这增加了成本,损害了转换器的效率,但是凭借良好的差分信号布线,我们能够以高得多的精度检测输出电流。随着容限累积,我们可以得到±5%或更好的总体电流检测性能。工程师们在设计评审中既证明了这种方案的合理性,又避开了对其设计影响效率和成本的批评,他们的勇气令我钦佩。6LDednc

使用一个由温度稳定的合金绕组构成的电感器如何?这个想法一露头,我的心就被吓得狂跳不止。6LDednc

还有其它方法吗?有个东西比电流检测电阻器要好。让功率链路器件报告其电流。这种方法运用设计良好的智能电源状态(SPS),虽然增加了电流检测成本,但是能够提供与标称输出要求非常接近的峰值功率能力,二者功过相抵。结果大大减少了过度设计功率链路元件导致的浪费。对这种电流检测方法我们可以寄予多大期望?就合理的运行区域而言(不要期望输出电流处在零附近时出现奇迹),我们可以得到±1%初始精度,随着老化和温度变化,最差的容限为±2%。6LDednc

一年又一年,技术的进步为工程师们提供了越来越好的基本构件。让“无开销”的DCR电流检测电路随风而去吧。6LDednc

《电子技术设计》2018年3月刊版权所有,转载请注明来源及链接。6LDednc

201606300001236LDednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了