广告

全球 AI 厂商排名公布:谁是实打实,谁在玩虚的

2018-04-27 网络整理 阅读:
过去三年,各大公司藉由收购AI及AI新创企业,已经总共在研发、投资AI领域超过600亿美元。目前,AI新创公司就有约1700家,业界对于AI芯片组需求正逐渐扩大。

市场研究顾问公司Compass Intelligence发布最新研究结果,公布全球前15大人工智能(AI)芯片企业排名表“A_List”,前三名依序为英伟达(Nvidia)、英特尔(Intel)以及恩智浦(NXP),苹果排名第8名,三星第11名、华为第12名。59iednc

过去三年,各大公司藉由收购AI及AI新创企业,已经总共在研发、投资AI领域超过600亿美元。目前,AI新创公司就有约1700家,业界对于AI芯片组需求正逐渐扩大。59iednc

Nvidia以其用于数据中心的Volta GPU架构、用于自动驾驶辅助系统(ADAS,用于自驾车的AI芯片)的NVIDIA DRIVE™PX、用于NVIDIA DRIVE™PX的Xavier系统(SOC) 2平台以及DGX-1 AI超级计算器等创新技术领先竞争对手。59iednc

此外,新创公司也表现不凡,像Knowm公司挑战当前芯片组架构,采用的是将内存和处理分开的设计方式。59iednc

Compass Intelligence资深顾问Nadine Manjaro表示:“每年我们都会根据全面性的Compass Intelligence架构、建模过程和指针驱动(metrics-driven)市场情报来严格评估IoT和AI领域的企业,选出产业中的领导者。”59iednc

A_List对AI芯片组(chipsets)定义:包括提供AI芯片组的软、硬件的公司。59iednc

AI芯片组产品包括:中央处理器(CPU),图像处理器(GPU),神经网络处理器(NNP),专用集成电路(ASIC),现场可编程门数组(FPGA),精简指令集计算器(RISC)处理器, 加速器等等。59iednc

还有一些芯片组针对边缘处理或设备、一些针对云计算中使用的服务器、以及一些针对机器视觉和自动车辆平台。 其中一些产品是AI的计算框架,另一些则是AI培训平台。边缘和服务器芯片组针对高性能和超低功耗进行优化后,运行速度可达每秒1万亿次(TOPs)至30个TOP。 电源效率对于延长边缘设备的电池使用寿命,降低服务器基础设施的电源成本,都非常重要。59iednc

编按:CompassIntel A_List 是一个专有的研究框架,使用指标汇编,综合经济指标、供货商追踪分析、企业统计、市场指标、定量追踪和分析,作为给移动设备、物联网和新兴技术市场中的供应商,提供评分和排名之参考。59iednc

本次全球前15名人工智能芯片企业依序为辉达(Nvidia)、英特尔(Intel)、恩智浦(NXP)、IBM、超威(AMD)、Google、ARM(安谋)/Softbank(软银)、Apple(苹果)、Qualcomm(高通)、Broadcom (博通)、三星、华为、Imagination(英国)、Synopsys(新思)以及联发科。 20180427-Ai-chipset-159iednc

20180427-Ai-chipset-159iednc

另外,从100多家公司进行评估,最终排出前24家公司,如下表。 59iednc

20180427-Ai-chipset-259iednc

相关阅读:

中科院自动化研究所曾详细介绍过AI芯片国内外的发展现状,小编将该部分分享给大家:59iednc

国外

技术寡头,优势明显59iednc

由于具有得天独厚的技术和应用优势,英伟达和谷歌几乎占据了人工智能处理领域80%的市场份额,而且在谷歌宣布其Cloud TPU开放服务和英伟达推出自动驾驶处理器Xavier之后,这一份额占比在2018年有望进一步扩大。其他厂商,如英特尔、特斯拉、ARM、IBM以及Cadence等,也在人工智能处理器领域占有一席之地。59iednc

058ednc2018042759iednc

当然,上述这些公司的专注领域却不尽相同。比如英伟达主要专注于GPU和无人驾驶领域,而谷歌则主要针对云端市场,英特尔则主要面向计算机视觉,Cadence则以提供加速神经网络计算相关IP为主。如果说前述这些公司还主要偏向处理器设计等硬件领域,那么ARM公司则主要偏向软件,致力于针对机器学习和人工智能提供高效算法库。59iednc

059ednc20180427
注:上述表格中所给为截止到2017年各研制单位公开可查的最新数据。59iednc

独占鳌头——英伟达59iednc

在人工智能领域,英伟达可以说是目前涉及面最广、市场份额最大的公司,旗下产品线遍布自动驾驶汽车、高性能计算、机器人、医疗保健、云计算、游戏视频等众多领域。其针对自动驾驶汽车领域的全新人工智能超级计算机Xavier,用NVIDIA首席执行官黄仁勋的话来说就是“这是我所知道的 SoC 领域非常了不起的尝试,我们长期以来一直致力于开发芯片。”59iednc

Xavier是一款完整的片上系统(SoC),集成了被称为 Volta 的全新 GPU 架构、定制 8 核 CPU 架构以及新的计算机视觉加速器。该处理器提供 20 TOPS(万亿次运算/秒)的高性能,而功耗仅为 20 瓦。单个 Xavier 人工智能处理器包含 70 亿个晶体管,采用最前沿的 16nm FinFET 加工技术进行制造,能够取代目前配置了两个移动 SoC 和两个独立 GPU 的 DRIVE PX 2,而功耗仅仅是它的一小部分。59iednc

而在2018年拉斯维加斯CES展会上,NVIDIA又推出了三款基于Xavier的人工智能处理器,包括一款专注于将增强现实(AR)技术应用于汽车的产品、一款进一步简化车内人工智能助手构建和部署的DRIVE IX和一款对其现有自主出租车大脑——Pegasus的修改,进一步扩大自己的优势。59iednc

产学研的集大成者——谷歌59iednc

如果你只是知道谷歌的AlphaGo、无人驾驶和TPU等这些人工智能相关的产品,那么你还应该知道这些产品背后的技术大牛们:谷歌传奇芯片工程师Jeff Dean、谷歌云计算团队首席科学家、斯坦福大学AI实验室主管李飞飞、Alphabet董事长John Hennessy和谷歌杰出工程师David Patterson。59iednc

时至今日,摩尔定律遇到了技术和经济上的双重瓶颈,处理器性能的增长速度越来越慢,然而社会对于计算能力的需求增速却并未减缓,甚至在移动应用、大数据、人工智能等新的应用兴起后,对于计算能力、计算功耗和计算成本等提出了新的要求。与完全依赖于通用CPU及其编程模型的传统软件编写模式不同,异构计算的整个系统包含了多种基于特定领域架构(Domain-Specific Architecture, DSA)设计的处理单元,每一个DSA处理单元都有负责的独特领域并针对该领域做优化,当计算机系统遇到相关计算时便由相应的DSA处理器去负责。而谷歌就是异构计算的践行者,TPU就是异构计算在人工智能应用的一个很好例子。59iednc

2017年发布的第二代TPU芯片,不仅加深了人工智能在学习和推理方面的能力,而且谷歌是认真地要将它推向市场。根据谷歌的内部测试,第二代芯片针对机器学习的训练速度能比现在市场上的图形芯片(GPU)节省一半时间;第二代TPU包括了四个芯片,每秒可处理180万亿次浮点运算;如果将64个TPU组合到一起,升级为所谓的TPU Pods,则可提供大约11500万亿次浮点运算能力。59iednc

计算机视觉领域的搅局者——英特尔59iednc

英特尔作为世界上最大的计算机芯片制造商,近年来一直在寻求计算机以外的市场,其中人工智能芯片争夺成为英特尔的核心战略之一。为了加强在人工智能芯片领域的实力,不仅以167亿美元收购FPGA生产商Altera公司,还以153亿美元收购自动驾驶技术公司Mobileye,以及机器视觉公司Movidius和为自动驾驶汽车芯片提供安全工具的公司Yogitech,背后凸显这家在PC时代处于核心位置的巨头面向未来的积极转型。59iednc

Myriad X就是英特尔子公司Movidius在2017年推出的视觉处理器(VPU,vision processing unit),这是一款低功耗的系统芯片(SoC),用于在基于视觉的设备上加速深度学习和人工智能——如无人机、智能相机和VR / AR头盔。Myriad X是全球第一个配备专用神经网络计算引擎的片上系统芯片(SoC),用于加速设备端的深度学习推理计算。该神经网络计算引擎是芯片上集成的硬件模块,专为高速、低功耗且不牺牲精确度地运行基于深度学习的神经网络而设计,让设备能够实时地看到、理解和响应周围环境。引入该神经计算引擎之后,Myriad X架构能够为基于深度学习的神经网络推理提供1TOPS的计算性能。59iednc

执“能效比”之牛耳——学术界59iednc

除了工业界和厂商在人工智能领域不断推出新产品之外,学术界也在持续推进人工智能芯片新技术的发展。59iednc

比利时鲁汶大学的Bert Moons等在2017年顶级会议IEEE ISSCC上面提出了能效比高达10.0TOPs/W的针对卷积神经网络加速的芯片ENVISION,该芯片采用28nm FD-SOI技术。该芯片包括一个16位的RISC处理器核,1D-SIMD处理单元进行ReLU和Pooling操作,2D-SIMD MAC阵列处理卷积层和全连接层的操作,还有128KB的片上存储器。59iednc

韩国科学技术院KAIST的Dongjoo Shin等人在ISSCC2017上提出了一个针对CNN和RNN结构可配置的加速器单元DNPU,除了包含一个RISC核之外,还包括了一个针对卷积层操作的计算阵列CP和一个针对全连接层RNN-LSTM操作的计算阵列FRP,相比于鲁汶大学的Envision,DNPU支持CNN和RNN结构,能效比高达8.1TOPS/W。该芯片采用了65nm CMOS工艺。59iednc

相比较于鲁汶大学和韩国科学技术院都针对神经网络推理部分的计算操作来说,普渡大学的Venkataramani S等人在计算机体系结构顶级会议ISCA2017上提出了针对大规模神经网络训练的人工智能处理器SCALLDEEP。59iednc

该论文针对深度神经网络的训练部分进行针对性优化,提出了一个可扩展服务器架构,且深入分析了深度神经网络中卷积层,采样层,全连接层等在计算密集度和访存密集度方面的不同,设计了两种处理器core架构,计算密集型的任务放在了comHeavy核中,包含大量的2D乘法器和累加器部件,而对于访存密集型任务则放在了memHeavy核中,包含大量SPM存储器和tracker同步单元,既可以作为存储单元使用,又可以进行计算操作,包括ReLU,tanh等。而一个SCALEDEEP Chip则可以有不同配置下的两类处理器核组成,然后再组成计算簇。59iednc

论文中所用的处理平台包括7032个处理器tile。论文作者针对深度神经网络设计了编译器,完成网络映射和代码生成,同时设计了设计空间探索的模拟器平台,可以进行性能和功耗的评估,性能则得益于时钟精确级的模拟器,功耗评估则从DC中提取模块的网表级的参数模型。该芯片仅采用了Intel 14nm工艺进行了综合和性能评估,峰值能效比高达485.7GOPS/W。59iednc

国内

百家争鸣,各自为政59iednc

可以说,国内各个单位在人工智能处理器领域的发展和应用与国外相比依然存在很大的差距。由于我国特殊的环境和市场,国内人工智能处理器的发展呈现出百花齐放、百家争鸣的态势,这些单位的应用领域遍布股票交易、金融、商品推荐、安防、早教机器人以及无人驾驶等众多领域,催生了大量的人工智能芯片创业公司,如地平线、深鉴科技、中科寒武纪等。尽管如此,国内起步较早的中科寒武纪却并未如国外大厂一样形成市场规模,与其他厂商一样,存在着各自为政的散裂发展现状。59iednc

除了新兴创业公司,国内研究机构如北京大学、清华大学、中国科学院等在人工智能处理器领域都有深入研究;而其他公司如百度和比特大陆等,2017年也有一些成果发布。59iednc

060ednc20180427
注:上述表格中所给为截止到2017年各研制单位公开可查的最新数据。59iednc

全球AI芯片界首个独角兽——寒武纪59iednc

2017年8月,国内AI芯片初创公司寒武纪宣布已经完成1亿美元A轮融资,战略投资方可谓阵容豪华,阿里巴巴、联想、科大讯飞等企业均参与投资。而其公司也成为全球AI芯片界首个独角兽,受到国内外市场广泛关注。59iednc

寒武纪科技主要负责研发生产AI芯片,公司最主要的产品为2016年发布的寒武纪1A处理器(Cambricon-1A),是一款可以深度学习的神经网络专用处理器,面向智能手机、无人机、安防监控、可穿戴设备以及智能驾驶等各类终端设备,在运行主流智能算法时性能功耗比全面超越传统处理器。目前已经研发出1A、1H等多种型号。与此同时,寒武纪也推出了面向开发者的寒武纪人工智能软件平台 Cambricon NeuWare,包含开发、调试和调优三大部分。59iednc

软硬件协同发展的典范——深鉴科技59iednc

深鉴科技的联合创始人韩松在不同场合曾多次提及软硬件协同设计对人工智能处理器的重要性,而其在FPGA领域顶级会议FPGA2017最佳论文ESE硬件架构就是最好的证明。该项工作聚焦于使用LSTM 进行语音识别的场景,结合深度压缩(Deep Compression)、专用编译器以及 ESE 专用处理器架构,在中端的 FPGA 上即可取得比 Pascal Titan X GPU 高 3 倍的性能,并将功耗降低 3.5 倍。59iednc

在2017年10月的时候,深鉴科技推出了六款AI产品,分别是人脸检测识别模组、人脸分析解决方案、视频结构化解决方案、ARISTOTLE架构平台,深度学习SDK DNNDK、双目深度视觉套件。而在人工智能芯片方面,公布了最新的芯片计划,由深鉴科技自主研发的芯片“听涛”、“观海”将于2018年第三季度面市,该芯片采用台积电28nm工艺,亚里士多德架构,峰值性能 3.7 TOPS/W。59iednc

对标谷歌TPU——比特大陆算丰59iednc

作为比特币独角兽的比特大陆,在2015年开始涉足人工智能领域,其在2017年发布的面向AI应用的张量处理器算丰Sophon BM1680,是继谷歌TPU之后,全球又一款专门用于张量计算加速的专用芯片(ASIC),适用于CNN / RNN / DNN的训练和推理。59iednc

BM1680单芯片能够提供2TFlops单精度加速计算能力,芯片由64 NPU构成,特殊设计的NPU调度引擎(Scheduling Engine)可以提供强大的数据吞吐能力,将数据输入到神经元核心(Neuron Processor Cores)。BM1680采用改进型脉动阵列结构。2018年比特大陆将发布第2代算丰AI芯片BM1682,计算力将有大幅提升。59iednc

百家争鸣——百度、地平线及其他59iednc

在2017年的HotChips大会上,百度发布了XPU,这是一款256核、基于FPGA的云计算加速芯片,用于百度的人工智能、数据分析、云计算以及无人驾驶业务。在会上,百度研究员欧阳剑表示,百度设计的芯片架构突出多样性,着重于计算密集型、基于规则的任务,同时确保效率、性能和灵活性的最大化。59iednc

欧阳剑表示:“FPGA是高效的,可以专注于特定计算任务,但缺乏可编程能力。传统CPU擅长通用计算任务,尤其是基于规则的计算任务,同时非常灵活。GPU瞄准了并行计算,因此有很强大的性能。XPU则关注计算密集型、基于规则的多样化计算任务,希望提高效率和性能,并带来类似CPU的灵活性。59iednc

在2018年百度披露更多关于XPU的相关信息。59iednc

2017年12月底,人工智能初创企业地平线发布了中国首款全球领先的嵌入式人工智能芯片——面向智能驾驶的征程(Journey)1.0处理器和面向智能摄像头的旭日(Sunrise)1.0处理器,还有针对智能驾驶、智能城市和智能商业三大应用场景的人工智能解决方案。“旭日 1.0”和“征程 1.0”是完全由地平线自主研发的人工智能芯片,具有全球领先的性能。59iednc

为了解决应用场景中的问题,地平线将算法与芯片做了强耦合,用算法来定义芯片,提升芯片的效率,在高性能的情况下可以保证它的低功耗、低成本。具体芯片参数尚无公开数据。59iednc

除了百度和地平线,国内研究机构如中国科学院、北京大学和清华大学也有人工智能处理器相关的成果发布。59iednc

北京大学联合商汤科技等提出一种基于 FPGA 的快速 Winograd 算法,可以大幅降低算法复杂度,改善 FPGA 上的 CNN 性能。论文中的实验使用当前最优的多种 CNN 架构(如 AlexNet 和 VGG16),从而实现了 FPGA 加速之下的最优性能和能耗。在 Xilinx ZCU102 平台上达到了卷积层平均处理速度 1006.4 GOP/s,整体 AlexNet 处理速度 854.6 GOP/s,卷积层平均处理速度 3044.7 GOP/s,整体 VGG16 的处理速度 2940.7 GOP/s。59iednc

中国科学院计算机体系结构国家重点实验室在顶级会议HPCA2017上提出了一种基于数据流的神经网络处理器架构,以便适应特征图、神经元和突触等不同层级的并行计算,为了实现这一目标,该团队对单个处理单元PE进行重新设计,使得操作数可以直接通过横向或纵向的总线从片上存储器获取,而非传统PE只能从上至下或从左至右由相邻单元获取。该芯片采用了TMSC 65nm工艺,峰值性能为490.7 GOPs/W。59iednc

清华大学微纳电子系魏少军等2017年的VLSI国际研讨会上提出了基于可重构多模态混合的神经计算芯片Thinker。Thinker芯片基于该团队长期积累的可重构计算芯片技术,采用可重构架构和电路技术,突破了神经网络计算和访存的瓶颈,实现了高能效多模态混合神经网络计算。Thinker芯片具有高能效的突出优点,其能量效率相比目前在深度学习中广泛使用的GPU提升了三个数量级。Thinker芯片支持电路级编程和重构,是一个通用的神经网络计算平台,可广泛应用于机器人、无人机、智能汽车、智慧家居、安防监控和消费电子等领域。该芯片采用了TSMC 65nm工艺,片上存储为348KB,峰值性能为5.09TOPS/W。59iednc

新架构新技术——忆阻器59iednc

2017年清华大学微电子所钱鹤、吴华强课题组在《自然通讯》(Nature Communications)在线发表了题为 “运用电子突触进行人脸分类”(“Face Classification using Electronic Synapses”)的研究成果,将氧化物忆阻器的集成规模提高了一个数量级,首次实现了基于1024个氧化物忆阻器阵列的类脑计算。该成果在最基本的单个忆阻器上实现了存储和计算的融合,采用完全不同于传统“冯·诺依曼架构”的体系,可以使芯片功耗降低到原千分之一以下。忆阻器被认为是最具潜力的电子突触器件,通过在器件两端施加电压,可以灵活地改变其阻值状态,从而实现突触的可塑性。此外,忆阻器还具有尺寸小、操作功耗低、可大规模集成等优势。因此,基于忆阻器所搭建的类脑计算硬件系统具有功耗低和速度快的优势,成为国际研究热点。59iednc

在神经形态处理器方面,最为著名的就是IBM在2014年推出的TrueNorth芯片,该芯片包括4096个核心和540万个晶体管,功耗70mW,模拟了一百万个神经元和2.56亿个突触。而在2017年,英特尔也推出一款能模拟大脑工作的自主学习芯片Loihi,Loihi由128个计算核心构成,每个核心集成了1024个人工神经元,整个芯片拥有超过个13万个神经元与1.3亿个突触连接,与人脑超过800亿个神经元相比,简直是小巫见大巫,Loihi的运算规模仅比虾脑复杂一点点而已。英特尔认为该芯片适用于无人机与汽车自动驾驶,红绿灯自适应路面交通状况,用摄像头寻找失踪人口等任务。59iednc

而在神经形态芯片研究领域,清华大学类脑计算研究中心施路平等在2015年就推出了首款类脑芯片—“天机芯”,该芯片世界首次将人工神经网络(Artificial Neural Networks, ANNs)和脉冲神经网络(Spiking Neural Networks,SNNs)进行异构融合,同时兼顾技术成熟并被广泛应用的深度学习模型与未来具有巨大前景的计算神经科学模型,可用于诸如图像处理、语音识别、目标跟踪等多种应用开发。在类脑“自行”车演示平台上,集成32个天机一号芯片,实现了面向视觉目标探测、感知、目标追踪、自适应姿态控制等任务的跨模态类脑信息处理实验。据悉,基于TSMC 28nm工艺的第二代天机芯片也即将推出,性能将会得到极大提升。59iednc

2016063000012359iednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 用LM337改造,让PWM DAC获得1.5 A输出能力 DAC是一种低功耗设备,其功率和电流输出能力仅限于毫瓦和毫安范围。当然,从根本上讲,它们没有理由不与合适的功率输出级配合使用,这确实也是常见的实际做法。不过,为了好玩,这个设计实例采用了不同的供电方式···
  • 如何制作双变频的航空波段接收机? 随着互联网的发展,中波和短波频段的接收机已成为过去式,更不用说长波了。不过也许在无线电领域中最有趣的活动之一就是收听服务发射机,对于我这个与航空相关的人来说,主要指的是飞机的发射机和空中交通管制塔···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了