广告

电流检测放大器输入和输出滤波

2018-06-25 安森美 阅读:
由于多种不同的原因,可能需要在电流检测放大器(CSA)的输入或输出端进行滤波。低于1 mΩ的分流电阻具有并联电感,在电流检测线上会引起尖峰瞬态事件,从而使CSA前端过载。文章将讨论滤除这些特定的尖峰瞬态事件的主要考虑因素。

由于多种不同的原因,可能需要在电流检测放大器(CSA)的输入或输出端进行滤波。今天,我们将重点谈谈在使用真正小的分流电阻(在1 mΩ以下)时,用NCS21xR和NCS199AxR电流检测放大器实现滤波电路。低于1 mΩ的分流电阻具有并联电感,在电流检测线上会引起尖峰瞬态事件,从而使CSA前端过载。我们来谈谈滤除这些特定的尖峰瞬态事件的主要考虑因素。Utpednc

在某些应用中,被测量的电流可能具有固有噪声。在有噪声信号的情况下,电流检测放大器输出后的滤波通常更简单,特别是当放大器输出连接到高阻抗电路时。放大器输出节点在为滤波器选择组件时提供了最大的自由度,并且实现起来非常简单,尽管它可能需要后续的缓冲。Utpednc

当分流电阻值减小时,并联电感对频率响应有显著影响。在小于1 mΩ的情况下,并联电感产生传递函数中的零点,通常导致在100 kHz的低频率下产生拐角频率。这种电感增加了电流检测线路上高频尖峰瞬态事件的幅值,从而使任何并联电流检测集成电路(IC)的前端过载。这个问题必须通过在放大器输入端进行滤波来解决。请注意,无论制造商如何声称,所有电流检测IC都容易受到此问题的影响。即使尖峰频率高于器件的额定带宽,也需要在器件的输入端进行滤波以解决此问题。Utpednc

其他应用,如DC-DC转换器和电源应用也可能需要在电流检测放大器的输入端进行滤波。图1所示为建议的输入滤波原理图。Utpednc

OnSemi-E1-20180625
图1:输入滤波补偿小于1 mΩ的分流电阻的并联电感,以及任何应用中的高频噪声。Utpednc

由于滤波电阻的增加电阻和它们之间的相关电阻失配会对增益、共模抑制比(CMRR)和VOS产生不利影响,所以输入滤波是复杂的。对VOS的影响部分还归咎于输入偏置电流。因此,输入电阻值应限制在10 Ω以下。至少,选择电容器以精确地匹配分流电阻器及其电感的时间常数;或者,选择电容器以提供低于该点的极点。Utpednc

使输入滤波器时间常数等于或大于并联电阻及其电感时间常数:Utpednc

OnSemi-E1-20180625Utpednc

这简化为基于使用10 Ω电阻来确定每个RFILT的CFILT值:Utpednc

OnSemi-E2-20180625Utpednc

如果主要目的是滤除高频噪声,则应将电容器增加至提供所需滤波的值。Utpednc

例如,100 kHz的滤波频率需要一个80 nF电容。该电容器可以有一个低额定电压值,但应具有良好的高频特性。所需的电容器值可通过下面的公式计算:Utpednc

OnSemi-E3-20180625Utpednc

瞬态抑制

在瞬态共模电压大于30伏特(V)的应用中,需要瞬态抑制电路。有关如何设计瞬态抑制电路的详细信息,请参阅NCS21xR数据表中的基本连接应用注释。Utpednc

滤波并不总是必需的,具有最小的动态变化电流的电池供电的直流电路将是一个例子。大的、复杂的系统可能有高速变化的供电电流或电压(例如服务器、计算机),往往需要滤波以提供干净的信号,以进行电流控制、测量和分析。Utpednc

20160630000123Utpednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了