广告

挖谷歌AI芯片主管,为什么Facebook也要自研AI芯片?

2018-07-18 15:00:24 Lina 阅读:
从2018年年中开始,Facebook就在AI芯片方面频频发声。由于这两年来视频直播的盛行,越来越多用户选择使用这种方式分享自己的生活,这位Facebook的视频实时分析、实时审核过滤带来了极大的压力。

故事要从1992年开始说起。i9Fednc

1992年,在美国新泽西州霍姆德尔市,一处离海岸只有24公里的宁静小镇上,屹立着大半个世纪以来全球最著名的科学实验室之一——AT&T贝尔实验室。i9Fednc

i9Fednc

▲AT&T贝尔实验室i9Fednc

在这个传奇的实验室里,不仅诞生了7位诺贝尔奖获得者,还是诞生了世界上第一个晶体管、蜂窝式电话系统、通讯卫星、有声电影、太阳能电池、C/C++语言、UNIX系统……i9Fednc

不仅如此,世界上第一块人工智能芯片也同样诞生于此。i9Fednc

1992年,马克·扎克伯格只有8岁,离他后来创办世界第一大社交网络Facebook还有12年时间,离“卷积神经网络之父”Yann LeCun加入Facebook人工智能研究院还有21年。i9Fednc

就在这一年,世界上第一块——同时也被当时研究频频受挫的Yann LeCun称为“可能是世界上最后一块”——神经网络芯片ANNA,就诞生AT&T贝尔实验室里。i9Fednc

i9Fednc

▲1992年的AT&T贝尔实验室一景i9Fednc

一、ANNA之兴与卷积神经网络之衰

众所周知,无论是“人工智能”、“深度学习”还是“神经网络”,这些近年来大火的概念其实都可以追溯到几十年前。但由于这些算法对于数据与计算量都有着极大的要求,当时的软硬件条件都无法满足,因而这类研究一直到近些年才大火起来。i9Fednc

不过,即便在众人并不看好深度学习的年月里,依然有一小群在“神经网络寒冬”里也坚持信念的科学家们,Yann LeCun就是其中一个。i9Fednc

1988年10月,在学习完神经科学、芯片设计,并师从多伦多大学深度学习鼻祖Geoffrey Hinton后,年仅27岁的年轻博士后Yann LeCun来到美国新泽西州,正式成为传奇的AT&T贝尔实验室的一员。i9Fednc

在当时的贝尔实验室里,已经有一组研究员在进行英文字母识别的研究,并且积累下了一个拥有5000个训练样本的USPS数据集——这在当时已经是一个非常庞大的数据集。i9Fednc

在这个数据集的帮助下,Yann LeCun在三个月内便打造并训练了第一个版本的卷积神经网络LeNet one,在字母识别上取得了有史以来最高的准确率,也正式标志着卷积神经网络的诞生。i9Fednc

不过,Yann LeCun的研究并没有止步在软件层面。1989年,Yann LeCun与实验室的其他实验员Bernhard Boser、Edi Sackinger等人共同撰写了一篇新论文,介绍了他们所研制的一款名为“ANNA”的神经网络芯片。i9Fednc

i9Fednc

▲“ANNA”神经网络芯片i9Fednc

ANNA中包括64个计算单元,专门针对卷积神经网络进行了优化,其峰值吞吐量为每秒40亿次加法。i9Fednc

虽然在此之前,神经网络作为一个新兴的研究方向已然小有名气,有不少研究人员也尝试打造过神经网络芯片,但它们都无法放在板级(Board-Level)测试环境中,也就无法在真实世界中应用。i9Fednc

除了ANNA之外,贝尔实验室还曾在1991年打造过一款Net32K芯片。在Yann LeCun等人随后发布了一系列论文中,他们不仅介绍了ANNA在板级测试中的优秀表现,还展示了ANNA在利用卷积神经网络在文本倾斜检测、手写数字识别等应用上的优异表现(比单独的DSP快10到100倍),让ANNA当之无愧地成为了世界上第一块“能用的”人工智能芯片。i9Fednc

i9Fednc

▲搭载ANNA的测试板原理示意图i9Fednc

不过,天有不测风云。1996年,AT&T公司进行了一轮拆分,通信运营业务保留在新AT&T中,一部分贝尔实验室和AT&T的设备制造部门被剥离出来形成了朗讯科技,另一部分负责计算机业务的部门则组建了NCR公司。i9Fednc

i9Fednc

▲Yann LeCun(后排中间)与新AT&T实验室成员,摄于2002年i9Fednc

Yann LeCun留在了新AT&T的实验室里,担任AT&T实验室图像处理研究部门负责人,然而极其不幸的是,卷积神经网络的专利却被律师团队最终决定分给了NCR公司(这一专利在2007年过期)。i9Fednc

用Yann LeCun的话来说,“当时NCR手握卷积神经网络的专利,却完全没有人知道卷积神经网络到底是什么”,而自己却因为身处另一家公司而无法继续进行相关研究。i9Fednc

然而,在1996年后的时间里,科学界对神经网络的兴趣逐渐走向衰微,越来越少人进行相关研究,一直到2010年以后才重新兴起。i9Fednc

二、AI芯片浪潮袭来

让我们把时间调回现在。i9Fednc

在过去的这十年间,AI领域迎来了一场新浪潮。i9Fednc

人工智能这一项新兴技术,在经历了技术积累、升级、发酵之后,正在以AI芯片作为载体而全面崛起。据智东西报道了解得知,目前全球至少有50家初创公司正在研发语音交互和自动驾驶芯片,并且至少有5家企业已经获得超过1亿美元的融资,这一数目还在不断增加当中。i9Fednc

除了创业市场一片兴盛外,各大科技巨头也毫不示弱。除了谷歌、苹果、华为、百度、英特尔、赛灵思等巨头陆续重拳入局AI芯片外,亚马逊也被曝出拥有449人的芯片团队,设计定制AI芯片的消息基本坐实。i9Fednc

作为目前全球市值最高的第五大科技企业,日活跃用户达14.5亿、月活跃用户达22亿的全球第一大社交网站Facebook自然也不会缺席这场战役。i9Fednc

2013年,时任纽约大学教授的Yann LeCun宣布加入Facebook,帮助建立Facebook人工智能研究院(FAIR)。i9Fednc

i9Fednc

▲部分Facebook人工智能研究院成员i9Fednc

在成立五年以来,Facebook人工智能研究院已经在美国加州门洛帕克(Facebook总部)、美国纽约、法国巴黎、以及加拿大蒙特利尔等地建有六所人工智能研究所,拥有超过115位科学家,各自专攻机器视觉、机器学习、自然语言处理等领域,包括何凯明、田渊栋等国内熟悉的人工智能学者。i9Fednc

在Yann LeCun的带领下,Facebook人工智能研究院中不仅诞生了著名的Caffe、Caffe2深度学习开源框架,也让Facebook在这人工智能浪潮当中能够与谷歌等巨头一争高下。i9Fednc

早在2017年底,Facebook就已经作为英特尔的首位合作伙伴,内部测试了英特尔AI云端芯片Spring Crest,并与英特尔合作进行了AI芯片的研发与优化,一时间有关“Facebook要打造自己的云服务器AI芯片”的传言尘嚣甚起。i9Fednc

不过我们综合各方线索来看,Facebook最先打造的应该并不会是一款能够支持多种AI应用的通用云端AI芯片,而是一款主攻视频的AI芯片,不过目测这款芯片不会在近期与众人见面。i9Fednc

三、挖角谷歌,大规模扩建AI芯片团队

从2018年年中开始,Facebook就在AI芯片方面频频发声。i9Fednc

5月,在巴黎Viva科技峰会上,Yann LeCun首次直接披露了Facebook在AI芯片方面的具体方向:视频实时监测。i9Fednc

由于这两年来视频直播的盛行,越来越多用户选择使用这种方式分享自己的生活,这位Facebook的视频实时分析、实时审核过滤带来了极大的压力。i9Fednc

2017年的复活节时,一名男子在Facebook上直播开枪杀人,该视频在Facebook上停留了超过2个小时后才被删除,引起了社会的极大恐慌。i9Fednc

传统软硬件不仅分析过滤不及时,对于越来越大量的视频压缩、审核、监管等应用,传统软硬件在计算资源和功耗控制上都达不到要求。i9Fednc

Yann LeCun说,“Facebook之所以要自己做芯片,是因为传统资源无法满足新时代需求,传统方法已经失效,我们需要一款AI芯片,实时分析和过滤视频内容。”i9Fednc

顺便一提的是,今年1月,Yann LeCun宣布将不再担任FAIR负责人,将由前IBM大数据集团CTO Jérôme Pesenti接任。LeCun表示他将改任Facebook的首席AI科学家,专注于AI学术研究以及对FAIR进行方向性指导。i9Fednc

i9Fednc

▲Shahriar Rabii的LinkedIn界面i9Fednc

目前。Facebook的AI芯片团队还处在早期的起步组建阶段。就在上周,Facebook才刚刚从谷歌挖来一员大将——谷歌前芯片产品开发部门负责人Shahriar Rabii跳槽,担任Facebook副总监及芯片部分负责人一职。i9Fednc

Shahriar Rabii曾在谷歌工作7年,离职前职位为高级工程师主管、芯片产品开发部门负责人。他负责带队进行了大量针对消费者用户的芯片研发工作,其中最值得一提的是为“谷歌亲儿子”Pixel智能手机打造的Visual Core定制化AI视觉芯片,这枚芯片能够为智能手机摄像头带来机器学习AI功能。i9Fednc

更早之前的4月19日,Facebook的第一条AI芯片招聘信息开始在线上流传。在招聘信息当中,Facebook宣布即将为招聘一名管理者(Manger)来组建“端对端SoC/ASIC固件和驱动开发组织”,该管理者需要“针对多个垂直领域开发定制解决方案,包括人工智能和机器学习”。i9Fednc

i9Fednc

在同日的另一则招聘启事中,Facebook则表示正在招聘“ASIC&FPGA设计工程师”,该工程是需要拥“架构和设计半定制和全定制ASIC的专业知识、能够与软件和系统工程师合作,了解当前硬件的局限性,并利用他们的专业知识打造针对多种应用(包括人工智能/机器学习,压缩,视频解码等)的定制解决方案。i9Fednc

时至今日,Facebook依然有不少AI芯片相关的岗位招聘挂在LinkedIn页面上,并且在持续更新中:比如五天前跟新的一条“内存&芯片产品总监”招聘信息、以及三天前更新的两条“ASIC&FPGA工程师”、“ASIC/FPGA技术项目主管”招聘信息。i9Fednc

从高调挖人到大规模招聘,可见Facebook在AI芯片的决心与投入。不过如果按照芯片18个月的设计制造周期来说,如果Facebook现在才开始招募团队,那么离芯片真正量产就还有至少一年时间。i9Fednc

结语:AI芯片的巨大想象空间

随着AI算法的进一步发展,人工智能在不同应用领域的分化也越来越明显。对于任何一个业务体量巨大的科技公司而言,专为自己业务线所打造的定制化AI芯片能够带来的成本缩减与效率提升有着巨大的想象力,任何一个科技巨头都不会轻易放过这一机会。i9Fednc

虽然硬件研发一直都不是Facebook的强项,但是如果瞄准的只是视频压缩与审查这一领域,那么AI芯片打造的难度将会大大小于通用云端AI芯片(君不见英特尔的AI芯片一再推迟面世),可能会比预期更早与世人见面。i9Fednc

(来源:智东西)i9Fednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 打造下一代家用机器人:精心构建智能化、集成化和电源优 ​​​​​​​今天的家用机器人不仅仅是工具,它们已经成为人们的生活伙伴,为日常生活增添了便利性和互动性。设计这些结构紧凑、功能强大的机器需要克服连接性、电源和外形尺寸等方面的严峻挑战,每一次突破都使我们更接近全面集成的智能家居体验···
  • 用LM337改造,让PWM DAC获得1.5 A输出能力 DAC是一种低功耗设备,其功率和电流输出能力仅限于毫瓦和毫安范围。当然,从根本上讲,它们没有理由不与合适的功率输出级配合使用,这确实也是常见的实际做法。不过,为了好玩,这个设计实例采用了不同的供电方式···
  • 意法半导体:让可持续世界从概念变为现实 最近,意法半导体人力资源和企业社会责任总裁Rajita D’Souza分享了意法半导体的可持续发展战略和近期工作重点···
  • 如何制作双变频的航空波段接收机? 随着互联网的发展,中波和短波频段的接收机已成为过去式,更不用说长波了。不过也许在无线电领域中最有趣的活动之一就是收听服务发射机,对于我这个与航空相关的人来说,主要指的是飞机的发射机和空中交通管制塔···
  • 用4200A和矩阵开关搭建自动智能的可靠性评估平台 在现代ULSI电路中沟道热载流子(CHC)诱导的退化是一个重要的与可靠性相关的问题···
  • 新一代MCU向着边缘AI和实时控制发展 在工业和汽车领域,电机驱动和数字电源转换是典型的实时控制系统,要求处理器具有高实时性和强大的数学计算与处理能力。这些应用需要优质的ADC和PWM功能,并通过联动机制,形成高效、有机的实时控制系统。
  • 英特尔Ultra处理器,用普通内存也能超频到10000 MT/s+? 目前内存超频的世界记录是12666MT/s,而想要达成这样的频率不光需要降低CPU频率,还需要辅助液氮等特殊的冷却方案,对内存进行降温。但已有主板可以在没有特殊冷却方案的情况下,超频到10000 MT/s以上···
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了