虽然二极管是一个简单器件,但它却有许多值得考虑的特性。这些特性通常取决于应用,其中一些应用包括:整流器、信号线或、晶体管关闭、续流(电感器和电机)等,当然还有专用功能如 LED 和基准电压。
二极管正如其三角形符号所表示的,只能在一个方向上传输电流,在相反方向则会阻止电流及电压。该理论是基于半导体结和掺杂区域的取向。其中最基本的是PN结二极管。
图1:基本二极管符号、组成、封装图和图形。(图片来源:《电子和电气工程师指南》)
二极管偏置,将通过一个较低的正向压降“自动”传输电流——PN结二极管的典型压降值为0.7V,肖特基二极管的典型值为0.3V。工作是在第一象限,其中电压和电流均为正,而第四象限是阻断电压及所产生的漏电流。大多数功耗都是根据这两个工作点计算的。然而,二极管的快速开关也会引起功耗,其表现形式为在开关期间出现的电压和电流。
图2:开通波形。(图片来源:Vishay)
图3:关断波形。(来源:Vishay)
反向恢复也会引起功耗,这与SiC等新型半导体材料的技术发展有关。有许多不同类型的半导体材料用于二极管,包括GaN和GaAs。它们针对不同的需求而有相应的优势,比如更快的恢复时间、更高的阻断电压,以及更大的电流容量等。
图4:反向恢复时间比较。(图片来源:Research Gate)
因为这些半导体是基于能隙原理工作,所以二极管产生的热量会改变其特性。功耗会产生热量,因此功耗Ptotal = Pconduction + Pblocking + Pturnoff + Pturnon。幸运的是,在关断时间内,关断损耗是均衡的。否则,由于产生的电压和电流量,功耗可能变得非常明显。
关于二极管的最后一个想法是,它们不是万能的。二极管具有能量脉冲额定值,在周期性应用中会单次甚至重复吸收能量。了解这些限制以及对器件性能的影响可以避免许多令人头疼的问题。为保险起见,最好是将二极管并联或串联使用,以便略微分散应力。与同类器件不同,其分配一般很好。
(原文刊登于ASPENCORE旗下网站Planet Analog,参考链接:Diode Characteristics。)
《电子技术设计》2018年9月刊版权所有,禁止转载。