广告

利用“半收回”控制器从Bang-Bang传感器生成比例反馈

2018-11-07 13:44:56 Stephen Woodward 阅读:
多年来,用以提高伺服回路稳定性的反馈技术和控制策略日趋成熟,其中最强大、最受欢迎的是PID控制器,但它有局限性。笔者设计了一种比PID更简单、更容易调节的替代方案—称之为“半收回”(TBH)控制器。尽管TBH的动态性能(如稳定速度)与专业调节的PID回路并不总是相同,同时还必须应对各种不理想的过程,但其基本的稳定性和固有的零稳态误差很容易实现并且稳健。

逆向反馈和控制回路的引入堪称工程史上的一个辉煌进步,但随之而来(可能就在同一天!)的负面影响也凸显无遗,这引起了极大的混淆、挫折和失败,暴露出来的问题包括时间滞后、无阻尼过冲、不稳定和振荡等。多年来,各种反馈技术和控制策略不断涌现,以驯服这个驻留在伺服回路中破坏稳定性的鬼魔。其中最为强大和最受欢迎的当数比例积分微分(PID)控制器。QLpednc

尽管PID获得了广泛而成功的应用,但它也有自己的局限性。PID控制器的一个特殊问题是与单比特(即“高/低”或“Bang-Bang”)反馈传感器的配合。这样的传感器给PID造成了麻烦,因为它们的输出既不包含PID的比例(P)、也不包括微分(D)信息,只留下用于提取控制信号的积分(I)。遗憾的是,纯积分在受控变量中存在严重的稳定性问题。QLpednc

有一种“直接积分”算法对受控变量进行采样并从设定值中减去该值,将所得差值乘以增益因子,然后对结果进行积分以产生反馈(输出)信号。由此产生的伺服回路具有很好的性能,包括简单性和零稳态误差。但是,它还表现出不期望的持续振荡趋势,这种振荡最终不会回到设定点。这种持续的振荡几乎是不可避免的,因为当受控变量从偏离中纠正并努力回到设定点时,反馈已经严重地过度校正。由此产生的过冲可能会增加到与原始扰动一样大,导致与初始过冲一样大的反向下冲,并持续下去。QLpednc

图1所示为一个相对湿度控制的应用示例,红色曲线代表相对湿度,是在环境室中使用简单的“Bang-Bang”传感器和直接积分算法来实现的,这显然不太令人满意。QLpednc

DI1-F1-201811.jpgQLpednc
图1:“Bang-Bang”传感器和纯积分反馈引起系统不稳定。QLpednc

因此,十几年前,我尝试设计了一种比PID更简单、更容易调整的替代方案,它只有一个增益因子需要调整,而不是像PID那样需要调整三个。我将其称为“半收回”(TBH)控制器,并在2005年的一篇EDN设计实例文章中对其进行了描述。QLpednc

根据直觉,你可能想使用直接积分与“Bang-Bang”传感器来解决问题,当系统超过设定点时,它会对所需反馈进行更好的估计,比采用简单积分的方法要好。TBH控制器就是基于这样的想法,通过利用直接积分的无阻尼过冲和下冲近似相等来实现这一点。为此,引入了变量HO,它是先前转换中反馈项H的值。然后运行修改后的伺服回路,系统超过设定值的时刻除外。每当超过设定点时,将反馈项(H)替换为其当前值与前一个值(HO)的平均值。这一举措将收回累积在超过点之间的一半调整,因此才有了这个绰号:TBH。QLpednc

尽管TBH的动态性能(例如,稳定速度)与专业调谐的PID回路还不能相提并论,同时还必须应对各种困难的不理想过程,但它很容易实现基本的稳定性和固有的零稳态误差且比较稳健。QLpednc

令人高兴的是,纯积分的稳定控制是TBH的专长。修改TBH的纯积分结果如图2所示,可以明显看出有更好的性能。QLpednc

DI1-F2-201811.jpgQLpednc
图2:通过TBH积分改善收敛和稳定性。QLpednc

要提供这一方法的工作示例,需详细了解TBH湿度控制解决方案。我们必须从描述“Bang-Bang”湿度传感器开始:Vishay 691,当环境相对湿度(RH%)从10%变化到90%时,其电容从~112pF变化到~144pF(即~0.36pF/%RH)。参数曲线见图3。QLpednc

 DI1-F3-201811.jpgQLpednc

使用该传感器的完整控制系统如图4所示。电路拓扑结构利用RS触发器IC3A作为电容比比较器,将Vishay探测器CX与参考电容CREF相关联,VR2设置设定点比率,从而得到设定点RH%。比较器仅指示传感器的读数是高于还是低于设定值。QLpednc

IC2B(引脚7)产生一个工作在22Hz左右的简单时钟。控制器的比较周期从时钟的正向转换开始,它将IC3A上的R和S输入驱动为高电平。这种情况将RS触发器置于一个逻辑上异常的奇怪的状态,同时将Q和-Q输出设置为高电平。当时钟信号随后返回低电平时,IC3A的S和R输入紧跟其后,速率取决于各自的RC时间常数。QLpednc

IC3A从逻辑异常状态退出,并且最终进入稳定的0/1状态,这取决于哪个输入(R或S)是由更长的RC时间常数驱动的。因为S引脚上的时间常数取决于CX,因而也由RH%决定。如果RH%<设定值,则Q = 0,如果RH%>设定值,则Q = 1。IC3B在下一个时钟周期开始时捕获IC3A自身的排序结果并进入稳定的二进制状态,如图5的时序图所示。QLpednc

DI1-F4-201811.jpgQLpednc
图4:TBH湿度控制器。QLpednc

控制器的比例输出信号来自积分器IC2A,它从IC3B接收由VR1缩放后的信号——这是TBH(唯一的)反馈增益因子。同时,IC1的开关将IC3A和IC3B的输出与时钟(IC2B)相结合,每当检测到的RH信号在任一方向上超过设定值时,就产生低电平脉冲。当收回一半的情况发生时,TBH设定点超过脉冲对反馈收敛和稳定性至关重要。得到的输出信号如图5所示。QLpednc

DI1-F5-201811.jpgQLpednc
图5:RH传感器和TBH算法时序图QLpednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Generate proportional feedback from a bang-bang sensor with a "take back half" controller。)QLpednc

《电子技术设计》2018年11月刊版权所有,禁止转载。QLpednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Stephen Woodward
W .Stephen Woodward是仪表、传感器和计量学自由顾问,是EDN设计实例栏目最高产且最富创意的作者之一。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 打造下一代家用机器人:精心构建智能化、集成化和电源优 ​​​​​​​今天的家用机器人不仅仅是工具,它们已经成为人们的生活伙伴,为日常生活增添了便利性和互动性。设计这些结构紧凑、功能强大的机器需要克服连接性、电源和外形尺寸等方面的严峻挑战,每一次突破都使我们更接近全面集成的智能家居体验···
  • 意法半导体:让可持续世界从概念变为现实 最近,意法半导体人力资源和企业社会责任总裁Rajita D’Souza分享了意法半导体的可持续发展战略和近期工作重点···
  • 如何制作双变频的航空波段接收机? 随着互联网的发展,中波和短波频段的接收机已成为过去式,更不用说长波了。不过也许在无线电领域中最有趣的活动之一就是收听服务发射机,对于我这个与航空相关的人来说,主要指的是飞机的发射机和空中交通管制塔···
  • 用4200A和矩阵开关搭建自动智能的可靠性评估平台 在现代ULSI电路中沟道热载流子(CHC)诱导的退化是一个重要的与可靠性相关的问题···
  • 多功能ADC前端该如何校准?看看这篇 假设所有时间常数组件公差的最坏情况相互叠加,A1c的增益可能会变化±2%,G的变化高达±3%。这对于精确的数据采集来说过于离谱!该怎么办?
  • 将量子传感器用在假肢中,检测精度能提高多少? 最近,德国斯图加特大学的多学科联盟QHMI开发了一种全新的方法,使用量子传感器来检测微小而快速的神经信号,为非侵入性假肢控制提供了新的可能···
  • 使用分流电阻器测量电流 分流电阻器是一种插入电路中测量电流的精密元件。在使用灵敏表头测量电流的电流表中,将分流电阻器与表头并联,就可以将部分电流从表头中“分流”出去···
  • 简单又实用,一起看看这个不寻常的多功能ADC前端 各种模拟前端功能通常可协助ADC完成其工作。这些功能包括仪表放大器(INA)、数字可编程增益(DPG)和采样与保持(S&H)···
  • 从碳化硅到机器人:ST描绘未来工业发展蓝图 意法半导体(ST)第六届工业峰会于2024年10月29日召开,延续以“激发智能,持续创新”为主题,聚焦工业市场前沿技术和解决方案。峰会演讲嘉宾深入探讨了电源与能源、电机控制、自动化等领域的技术发展趋势和ST的创新成果,为构建更可持续的未来描绘了宏伟蓝图···
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了