广告

雷达VS激光雷达,究竟谁更适合自动驾驶车?

2019-01-07 12:51:38 Junko Yoshida 阅读:
今日的科技与汽车产业高层及工程师们,对于如何赶上自动驾驶车辆(automated vehicles,AV)的技术与商业发展蓝图都有许多疑问:我们需要激光雷达(lidar)吗?科技与汽车产业真的准备好合作追求“网络效应”(network effect)以实现驾驶软件的演进?产业界将解决L2与L3自动驾驶车辆的控制权换手(handover)问题吗?

今日的科技与汽车产业高层及工程师们,对于如何赶上自动驾驶车辆(automated vehicles,AV)的技术与商业发展蓝图都有许多疑问;而根据市场研究机构IHS Markit的车用资通讯娱乐系统与先进驾驶辅助系统(ADAS)研究总监Egil Juliussen表示,其中有三个最大的问题会是汽车产业界在2019年特别急切想知道答案的:3gEednc

  • 我们需要激光雷达(lidar)吗?
  • 科技与汽车产业真的准备好合作追求“网络效应”(network effect)以实现驾驶软件的演进?
  • 产业界将解决L2与L3自动驾驶车辆的控制权换手(handover)问题吗?

产业界肯定会看到科技业者、第一线汽车零组件供货商(Tier One)以及车厂之间,在自驾车方面的新一波合作;还有数家公司正在尝试新技术,例如自适应驾驶人注意力管理(adaptive driver attention management,ADAM)平台,以解决L2与L3自驾车的控制权换手问题。3gEednc

有鉴于当机器突然将车辆控制权交回给人类驾驶员,可能出现难以想象的两难困境;因此市场研究机构Semicast Research首席分析师Colin Barnden接受EE Times访问时表示:“预期在即将于美国拉斯韦加斯举行的2019年度国际消费性电子展(CES)上,会看到Tier One与车厂重燃对驾驶人监视系统的兴趣。”3gEednc

不过,配备了ADAS的车辆与自驾车真的都需要激光雷达吗?对此IHS Markit的Juliussen告诉EE Times:“我们将开始听到更多相关讨论;”他解释,会出现以上的疑问是因为数字成像雷达(digital imaging radar)的崛起:“这类技术能比以往做的更多。”3gEednc

自驾车不需要激光雷达的这个想法已经在产业界讨论了近一年;这个提议很诱人,因为多数车厂都认为激光雷达太昂贵,也同意激光雷达技术仍有许多待克服的挑战。而虽然没有人指出“无激光雷达的未来”近在眼前,但有许多成像雷达技术供货商将之视为潜在目标之一;例如恩智浦(NXP Semiconductors)技术长Lars Reger就曾表示,该公司期望证明这是可行方案。3gEednc

融合激光雷达与摄影机的解决方案

一家总部位于美国加州Pleasanton的新创公司AEye,则是在不久前宣布推出第一款商用产品“iDAR”;这是一款与高分辨率摄影机融合的固态激光雷达(solid-state lidar),锁定ADAS与自驾车应用市场。AEye相信,车厂并不情愿采用现有的激光雷达技术,因为它们目前的解决方案仰赖一系列共同产生大量数据的独立传感器,3gEednc

AEye表示:“这种方式需要漫长的处理时间以及大量运算能力来收集、组合数据集,经过排列、分析、校正、压缩采样等程序,将之转译为能用以安全导引车辆的可执行信息;”而该公司的想法是,仅根据对于自驾车路径规划是否有用,利用人工智能(AI)有差别地收集数据,而不是把所有收集到的数据以相同的优先级排列。3gEednc

AEye营销副总裁Stephen Lambright在接受EE Times访问时表示,就是以上想法鼓励该公司开发出iDAR;而实际上iDAR是深植于最初为了国防产业所开发的技术。AEye执行长Luis Dussan过去专精于为战斗机设计监控、侦查与防御系统,他成立这家公司的目的是“为自动驾驶车辆提供军用等级的性能。”3gEednc

Lambright指出,AEye开发iDAR是根据Dussan从塑造军机感知系统学到的三个原则:1. 绝不错过任何东西;2. 了解各种物体并不平等,需要不同等级的注意力;3. 实时处理任何事情。AEye的产品部门副总裁Aravind Ratnam表示,简单来说,iDAR的目标是开发“不需要浪费运算周期”的传感器融合系统。3gEednc

iDAR的功能区块包括1550奈米的固态MEMS激光雷达、低光线HD摄影机以及嵌入式AI;Ratnam指出,该系统的设计是“结合”2D摄影机的像素(pixels,RGB)以及3D激光雷达数据的立体像素(voxels,XYZ),提供一种“新的实时传感器数据型态”,以达到更高精确度、更长的传输距离,还有比自驾车路经规划系统速度更快的、更多智能的信息。3gEednc

值得注意的是,AEye的iDAR提供的不是独立摄影机与激光雷达系统的扫描后融合,而是藉由开发AI感知系统,将固态激光雷达与高分辨率摄影机实质融合;该公司解释,其iDAR“建立了一种称为动态立体像素(dynamic vixels)的数据新型态”,透过撷取X、Y、Z与R、G、B数据,这种动态立体像素号称是模仿了人类大脑视觉皮层的数据结构。3gEednc

最新的iDAR系统AE110在2018年12月发表,是第四代原型;Ratnam表示,该系统包括一个以Xilinx的Zynq系列SoC为基础的“组合器”(combiner)单芯片,内建Arm处理器核心。他并指出,该系统的设计宗旨是支持关键分析与硬件加速功能,并在单一袁建中整合CPU、DSP、ASSP与混合讯号功能;AEye打算在2019年自行设计该组合器单芯片ASIC。3gEednc

3gEednc

AEye的iDAR系统AE110功能区块图(来源:AEye)3gEednc

“机器视觉+雷达”还是“机器视觉+激光雷达”?

在AEye推销其结合机器视觉与激光雷达之传感器系统的同时,有几家高精确度毫米波雷达(mmWave radar)芯片开发商则是提倡“机器视觉结合雷达”的解决方案。市场研究机构Linley Group资深分析师Mike Demler认为,AEye将摄影机与激光雷达融合“是有趣的方法,或许会有一些独特的功能;”但他也指出,AEye并非唯一提出该类解决方案的公司。3gEednc

Demler表示,Tier One业者Continental也有卖结合摄影机与激光雷达的系统,不过可能是预先处理之后才结合来自两个独立传感器的数据;在他看来,AEye的方案优势会在于“传感器融合软件”,因为在本质上,“将摄影机/激光雷达影像传感器视为整合装置,正如他们所声称,有可能会加速对感兴趣区域的识别。”3gEednc

但是除此之外,两种传感器的所有优缺点仍然存在。Demler指出,AEye采用MEMS激光雷达,却似乎未透露其空间分辨率;他猜测,与像是Velodyne的扫描激光雷达相比较,这可能会是一个缺点:“摄影机传感器就算拥有最高分辨率,也无法处理特别亮或是特别暗的场景,而且也可能受到阻挡镜头的尘土或降雨/雪的限制。同样的,激光雷达在降雨/雪中的菜单现也不如雷达,因此你会无法仰赖它来侦测物体,而且大多数的激光雷达无法量测速度。”3gEednc

在被问到AEye时,自动驾驶技术顾问公司VSI Labs创办人Phil Magney则透露,他的公司有被委托验证激光雷达的感测距离与扫瞄速率等性能表现;他强调:“iDAR传感器的独特之处在于,它结合了传感器与激光雷达,并在中央计算机摄取组合值之前融合数据。”3gEednc

以他的观点:“这是真正的边缘融合(edge fusion),因为该装置在任何分类发生之前就融合原始数据与摄影机数据;我们也知道,该装置拥有深入某个感兴趣对象的能力,也就是并不需要处理整个点云(point cloud)场景。”Magney坦言,AEye的iDAR具备更妥善分类的潜能,“因为你有融合的摄影机资料可用;iDAR正在开发适用融合数据集的分类算法。”3gEednc

Magney 指出,AEye所谓的“动态立体像素”,在理论上能建立比摄影机或激光雷达本身能产出的、更丰富的内容,但他也强调:“基本上每个像素都有一个点,每个点都有一个像素,不过要记住,摄影机的分辨率会比激光雷达高得多,所以像素与点的比例并非1比1。”3gEednc

“拿iDAR与雷达来比较,有可能不需要雷达,因为激光雷达与雷达都是测距仪器;”他表示:如果你对激光雷达提供恰当深度感知、追踪目标物速度的能力有足够信心,就有可能。值得一提的是,iDAR的扫瞄率(100Hz)是大多数商用激光雷达产品的两倍,这会是该装置的另一个优势。”3gEednc

不过在另一方面,因为大多数配备ADAS的车辆会比全自动驾驶车辆早一步上市,雷达似乎会在ADAS市场上比激光雷达(或iDAR)更具优势。Magney认为:“雷达在恶劣天候下能运作得更好,因此也最适合ADAS,因为即使条件不适合自动驾驶,也需要安全系统运作;”而他也指出:“雷达本身仍受限于分类能力,这取决于雷达装置内的韧体;不过根据我们了解,雷达的分类能力正在改善,有供货商以及新创公司声称将会推出功能更丰富的产品。”3gEednc

VSI最近接受委托,在AEye iDAR传感器的性能测试中验证该测试与测试方法。Magney表示,该公司验证其激光雷达讯号能侦测1公里距离外的卡车,并证实其扫描速率达100Hz;他补充指出:“我们并未验证这种传感器的性能或安全性是否更好,但确认它具备足够的智能功能,可识别1,000公尺以外的物体。”3gEednc

究竟激光雷达好还是雷达好?Linley Group的Demler总结指出,针对较高等级的自动驾驶车辆,目前没有公司声称不一定要激光雷达:“当然,你可以打造一辆没有激光雷达的自驾车,但这并不表示它在所有条件下都能良好运作,或者是与配备了摄影机/激光雷达/雷达的系统一样安全。”3gEednc

在Demler看来,AEye的iDAR不能取代雷达,TI的毫米波成像雷达也不能取代激光雷达:“大多数的自驾车开发商会同时采用三种传感器,事实上他们还会用其他传感器,例如超音波传感器、红外线传感器;”他表示:“安全性与备援系统都需要备份,多类型的传感器也有必要,因为没有任何一种传感器能适用所有状况。”3gEednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:2019 AV Sensors: Vision, Radar, Lidar, iDAR ;编译:Judith Cheng)3gEednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Junko Yoshida
ASPENCORE全球联席总编辑,首席国际特派记者。曾任把口记者(beat reporter)和EE Times主编的Junko Yoshida现在把更多时间用来报道全球电子行业,尤其关注中国。 她的关注重点一直是新兴技术和商业模式,新一代消费电子产品往往诞生于此。 她现在正在增加对中国半导体制造商的报道,撰写关于晶圆厂和无晶圆厂制造商的规划。 此外,她还为EE Times的Designlines栏目提供汽车、物联网和无线/网络服务相关内容。 自1990年以来,她一直在为EE Times提供内容。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 儒卓力系统解决方案推出RAB4新型适配器板,实现厘米级精 儒卓力系统解决方案 (Rutronik System Solutions) 的专家与儒卓力无线技术中心 (Rutronik Wireless Competence Center) 携手开发了RAB4适配器板,无需设计任何硬件即可测试 RTK 性能,从而加速预开发阶段并降低成本,帮助客户更快地将应用推向市场……
  • CEVA和Autotalks扩大合作连手创建全球首个5G-V2X解决 Autotalks推出CEVA助力的最新V2X芯片TEKTON3和SECTON3已获主要汽车OEM厂商准予批量生产。
  • 复旦大学认证?剖析从疫情中诞生的“无人配送汽车”的历 复旦大学引入了美团的自动送餐配送车,为全校师生提供三餐无接触的配送服务,已经不是美团第一次助力疫情了,这项技术已经落地近2年而且不断地发展壮大,与各社会企业进行融合..
  • MiR自主移动机器人发布全新牵引产品MiR250 Hook “小身材、大能量”推动产线物流自动化
  • 用于先进视频处理解决方案的FPGA产品与技术 本白皮书将介绍基于FPGA的解决方案在以下三种应用中的优势:视频流;使用视频编辑软件来创作视频内容;人工智能(AI)和深度学习–图像识别是该应用的主要部分,其需要高性能的计算资源。
  • 坚持不懈的身影:Intel自动驾驶事业群副总裁Kathy Winte “不要永远只做擅长的事情,要延展自己的能力;尝试不熟悉的东西、学习新的技术领域或是市场,如此就能有所成长并能掌握更多新机会。”
  • 中国AI产业/技术与美国差距在哪里? 美国的AI产业布局非常完善,基础层、技术层和应用层都有涉及,尤其是在算法、芯片和数据等产业核心领域,积累了强大的技术创新优势,各层级企业数量全面领先中国。相比较而言,中国在基础元器件、基础工艺等方面差距较大。
  • 机器学习做传感器融合需做大量计算:定制单元块为eFPGA 时下,机器学习是一大热门话题,它与传感器融合密切相关,对计算提出了很高要求。Achronix公司eFPGA技术各方面性能和功耗相比传统FPGA都有很大优势。今年,该公司推出的Speedcore定制单元块,又为eFPGA的性能带来了更大提升。
  • 汽车ADAS需要EMI/EMC辐射很低的开关转换器 ADAS系统在新型汽车中的应用越来越广泛。找到一种不对ADAS系统造成干扰的电源转换器件,能够极大地简化设计师的任务,同时无需复杂的布局或设计方法,就可为设计师提供需要的所有性能。
  • 一组图表说清自动驾驶汽车的前世今生与未来 众所周知,自动驾驶汽车是汽车行业的新宠,但自动驾驶汽车并不是21世纪才出现的。在1939年纽约的世界博览会上,美国通用汽车公司(GM)的Futurama首次向世人展示了对未来自动驾驶的构想,这是世界关于自动驾驶汽车的最早记录。可以说,GM是自动驾驶的鼻祖。本文的一组图表生动地呈现了自动驾驶汽车的前世、今生与未来。
  • 5G如何改变数据中心 即将提供的基于5G网络技术的数据服务将可更快地在线访问更多数据。信息的这种即时性将支持许多当今先进的技术应用——如自主驾驶汽车和虚拟现实或增强现实系统——以省去本地存储的数据并转而依赖于云。为使其发挥效率,网络延迟需要小于1ms。这不仅需要在数据中心安装5G基础设施,还要求数据中心同时靠近用户及为其服务的蜂窝射频发射塔——而如果数据中心远在250英里外则会鞭长莫及!
  • 最近五年黑客从哪些方面对网联自动驾驶汽车进行了攻击 《速8》上映如火如荼,其中百辆自动驾驶汽车被黑的场面让人印象深刻。外行看热闹,内行看门道,这无疑给风头正劲的自动驾驶的安全问题再次敲响了警钟。那么,五年来黑客都从哪些方面对网联自动驾驶汽车进行了攻击?
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了