广告

马斯克:用激光雷达注定完蛋,特斯拉自动驾驶芯片秒杀同行

2019-04-23 11:23:49 网络整理 阅读:
在发布会上,马斯克不仅亮出了自家的自动驾驶“核武器”——特斯拉“全自动驾驶计算机”(full self-driving computer,以下称 FSD 计算机),还“豪言”称:傻子才用激光雷达,现在谁要还是靠激光雷达,那就要完蛋,注定完蛋!

凌晨,特斯拉举办“Autonomy Day”,正式发布全自动驾驶(Full Self-Driving,FSD)计算机,并且还宣布,最快在2020年就能在街头打到特斯拉无人出租(Robo Taxi)。M0Bednc

发布“世界上最先进的自动驾驶计算机”

在发布会上,马斯克首先亮出了自家的自动驾驶“核武器”——特斯拉“全自动驾驶计算机”(full self-driving computer,以下称 FSD 计算机),即之前所说的 Autopilot 硬件 3.0 正式亮相。M0Bednc

010ednc20190423M0Bednc

根据特斯拉芯片架构师Pete Bannon的说法,FSD计算机是“世界上最先进的自动驾驶计算机”——比当前的Hardware 2.5有了很大的改进。M0Bednc

012ednc20190423M0Bednc

特斯拉全自动驾驶计算机的内部M0Bednc

新的芯片组由三星制造,拥有超过144 TOPS的神经网络性能(完胜竞争对手目前最先进技术 21TOPS 的表现)。是建立在14纳米FinFET CMOS工艺上的,尺寸为260毫米平方,有60亿个晶体管和2.5亿个逻辑门,能够实现36.8 TOPS的性能。它们的LPDDR4 RAM模块(以每秒4266千兆比特的速度运行)拥有68 GB/s的峰值带宽,而集成的图像信号处理器——拥有24位pipeline,同时支持高级色调映射和高级降噪——每秒可以执行高达10亿像素的操作。M0Bednc

014ednc20190423M0Bednc

它有两个神经网络加速器,都是2GHz,都有32MB的SRAM内存和96×96的多重阵列和加法阵列,每秒可以处理高达1TB的数据并执行36 TOPS(总共72 TOPS)。M0Bednc

Bannon表示,其他芯片上的组件还包括支持32位和64位浮点运算的图形芯片,以及12个频率为2.2GHz的Arm A72 64位CPU,“性能是当前解决方案的2.5倍”。M0Bednc

在不影响车辆能耗和续航的前提下,FSD 能将安全性和自动化水平提升到新的等级。总体来看,这款 14nm 芯片的设计非常针对神经网络,团队对此进行了架构优化以降低耗能和成本,尤其针对处理大量的图像和视频。M0Bednc

此外,还有一个安全芯片,可确保系统只运行由特斯拉加密签名的代码,以及一个专用的H.265视频编码器。M0Bednc

013ednc20190423M0Bednc

特斯拉Autopilot 3.0硬件内置的片上系统之一M0Bednc

这在现实世界中意味着什么呢?Bannon说,与前代硬件相比,这相当于提高了约2.5倍的功耗,整体成本降低了80%。(马斯克说,FSDs每英里的功耗约为250瓦。)M0Bednc

或许更令人印象深刻的是,在特斯拉的内部基准测试中,FSD的每秒能处理2300帧,远高于Hardware 2.5的110帧。M0Bednc

马斯克透露,在过去的一个月时间里,特斯拉陆续放弃了英伟达提供的图像处理解决方案。马斯克表示,特斯拉的芯片是世界上最好的芯片,而且远超其他竞争对手。与此同时,特斯拉也已经将下一代芯片的工作进行了一半,马斯克表示下一代芯片可能比现有的好上 3 倍,有望在两年内推出。不过,马斯克并未准备在这次活动透露更多下一代芯片的信息。M0Bednc

马斯克:用激光雷达的公司注定失败

一场产品发布会,但马斯克的一番言论让业内震惊:M0Bednc

“Lidar is a fool’s errand,” Elon Musk said. “Anyone relying on lidar is doomed. Doomed! [They are] expensive sensors that are unnecessary. It’s like having a whole bunch of expensive appendices. Like, one appendix is bad, well now you have a whole bunch of them, it’s ridiculous, you’ll see.”M0Bednc

翻译过来如下:M0Bednc

"傻子才用激光雷达,现在谁要还是靠激光雷达,那就要完蛋,注定完蛋!激光雷达用了一大堆昂贵的传感器,毫无必要。就好比说,一个麻烦就已经够糟的了,而现在多了一大堆麻烦,这太荒唐了,不信等着瞧!"M0Bednc

为何马斯克认为计算机视觉方案比激光雷达(Lidar)方案更靠谱呢?M0Bednc

据了解,其特斯拉人工智能和自动驾驶视觉总监 Andrej Karpathy,这位李飞飞的高徒在斯坦福 AI 实验室攻读博士期间就已声名远扬。M0Bednc

这位 AI 大牛在特斯拉的主要工作是训练 FSD 以及神经网络信息处理。Andrej Karpathy 的现场演讲展示了早期将神经网络部署在真实世界中训练的重要性,比如说,特斯拉的每一位司机其实都参与到了神经网络的训练中,每一个新手都将为特斯拉的自动驾驶系统喂入新的数据。而且,Karpathy 认为,在神经网络的训练中,和数据的规模相比,数据的质量更加重要,特斯拉的原始数据集也可能是全球最有价值的,因为特斯拉拥有全球范围的车队,可以提供各种环境、天气条件的数据,还会收集车辆的异常道路表现数据。在数据的标注上,特斯拉也正在尝试自动化标注的方向。M0Bednc

015ednc20190423M0Bednc

Andrej 强调特斯拉非常依赖视觉传感器,特斯拉的 AI 软件能够处理来自视觉传感器收集到的车道线、交通、行人等信息,将这些信号与已知的物体进行匹配再最终作出决策。M0Bednc

他对比了激光雷达(Lidar)方案和计算机视觉方案的优劣,而且显然也和马斯克一样是计算机视觉派:“某种意义上,Lidar 是一个捷径。它回避了对自动驾驶非常重要的视觉识别基本问题,给人一种虚假的技术进步了的感觉”。他表示,和 Lidar 相比,特斯拉更加依赖计算机视觉,并将收到的视觉信息进行 3D 渲染,涵盖视频输入到深度感知。M0Bednc

也就是说,特斯拉认为,摄像头+数据+神经网络,足以挑战 Lidar。如此认定计算机视觉嫌弃 Lidar,这种选择现阶段这在业内也非常罕见,绝大多数业者还是采用 Lidar 的方案或者 Lidar+计算机视觉,因为目前的纯计算机视觉方案在安全性的保障上仍有一定风险。M0Bednc

英伟达第一个反对:特斯拉FSD不能跟我们比

M0Bednc

有意思的是,就在发布会结束不久,英伟达表示,特斯拉这次硬件上和英伟达的对比并不准确,主要体现在 FDS 144TOPS 与 Xavier21TOPS 的表现上,特斯拉将其自动驾驶计算机FSD描述为“比英伟达更强大”是错误的。M0Bednc

010ednc20190423M0Bednc

一位发言人在一封电子邮件中表示:“特斯拉的全自动驾驶计算机144 TOPS的处理性能与英伟达Drive Xavier的21 TOPS进行比较,这是不准确的。”M0Bednc

正确的比较对象应该是英伟达的全自动驾驶计算机——Nvidia Drive AGX Pegasus。这款计算机为AI感知、定位和路径规划提供高达320 TOPS的处理性能。M0Bednc

Xavier的处理能力有30 TOPS,而特斯拉错误地说成了21 TOPS。此外,只有一个Xavier处理器的系统是为辅助驾驶的自动驾驶仪而设计的,而不是完全自动驾驶。M0Bednc

小结:

本次发布会上不仅发布了大量硬件,也披露了特斯拉 Robotaxi,要等到 2020 年,可以算是一次特斯拉自动驾驶相关团队在过去 3 年成果的集体展示,但马斯克在会上的 FLAG “用激光雷达的公司注定失败”还需要大量的事实证明,毕竟,自动驾驶这个全行业公认的难题当然不是马斯克说解决就能解决的。M0Bednc

最后,联系刚刚在上海发生自燃事件以及 24 日第一季财报发布的这个时间点,特斯拉这次主要面向投资人的自动驾驶展示,附加价值也不言而喻了。M0Bednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 儒卓力系统解决方案推出RAB4新型适配器板,实现厘米级精 儒卓力系统解决方案 (Rutronik System Solutions) 的专家与儒卓力无线技术中心 (Rutronik Wireless Competence Center) 携手开发了RAB4适配器板,无需设计任何硬件即可测试 RTK 性能,从而加速预开发阶段并降低成本,帮助客户更快地将应用推向市场……
  • CEVA和Autotalks扩大合作连手创建全球首个5G-V2X解决 Autotalks推出CEVA助力的最新V2X芯片TEKTON3和SECTON3已获主要汽车OEM厂商准予批量生产。
  • 坚持不懈的身影:Intel自动驾驶事业群副总裁Kathy Winte “不要永远只做擅长的事情,要延展自己的能力;尝试不熟悉的东西、学习新的技术领域或是市场,如此就能有所成长并能掌握更多新机会。”
  • 汽车ADAS需要EMI/EMC辐射很低的开关转换器 ADAS系统在新型汽车中的应用越来越广泛。找到一种不对ADAS系统造成干扰的电源转换器件,能够极大地简化设计师的任务,同时无需复杂的布局或设计方法,就可为设计师提供需要的所有性能。
  • 一组图表说清自动驾驶汽车的前世今生与未来 众所周知,自动驾驶汽车是汽车行业的新宠,但自动驾驶汽车并不是21世纪才出现的。在1939年纽约的世界博览会上,美国通用汽车公司(GM)的Futurama首次向世人展示了对未来自动驾驶的构想,这是世界关于自动驾驶汽车的最早记录。可以说,GM是自动驾驶的鼻祖。本文的一组图表生动地呈现了自动驾驶汽车的前世、今生与未来。
  • 5G如何改变数据中心 即将提供的基于5G网络技术的数据服务将可更快地在线访问更多数据。信息的这种即时性将支持许多当今先进的技术应用——如自主驾驶汽车和虚拟现实或增强现实系统——以省去本地存储的数据并转而依赖于云。为使其发挥效率,网络延迟需要小于1ms。这不仅需要在数据中心安装5G基础设施,还要求数据中心同时靠近用户及为其服务的蜂窝射频发射塔——而如果数据中心远在250英里外则会鞭长莫及!
  • 最近五年黑客从哪些方面对网联自动驾驶汽车进行了攻击 《速8》上映如火如荼,其中百辆自动驾驶汽车被黑的场面让人印象深刻。外行看热闹,内行看门道,这无疑给风头正劲的自动驾驶的安全问题再次敲响了警钟。那么,五年来黑客都从哪些方面对网联自动驾驶汽车进行了攻击?
  • 性能飞跃!升级电流传感器NSM201x-P系列赋能汽车三电和 纳芯微推出全新车规级集成电流路径霍尔传感器NSM201x-P系列。该系列产品是对纳芯微已量产的NSM201x系列的完美升级与补充···
  • Melexis推出性能先进的温度传感器,以红外技术创新实现 全球微电子工程公司Melexis宣布,推出专为电磁炉设计的非接触式红外温度传感器芯片MLX90617···
  • 利用Arduino R4自制一个地震检测器,其实非常简单 构建地震运动检测器有多种技术。本文介绍的方法会使用一个简单的振动传感器、一个信号放大系统和一个Arduino R4,不过也可以根据需要用其他等效器件替换嵌入式器件···
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • Allegro MicroSystems 在 2024 年德国慕尼黑电子 新型微功率磁性开关和锁存器 APS11753 和 APS12753在更大气隙容差下可提供更高的灵敏度选项,并且具有极低功耗,比我们现有的微功率产品少耗电 50%···
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了