广告

5G超级上行是什么?

2019-07-18 10:20:11 网优雇佣军 阅读:
4G时代主要面向2C消费者,网络能力主要以下行流量为主。直到近几年,抖音等高速率的上行需求业务才逐渐出现。

4G时代主要面向2C消费者,网络能力主要以下行流量为主。直到近几年,抖音等高速率的上行需求业务才逐渐出现。Z2Gednc

5G时代万物互联,与2C的eMBB不同,2B行业应用的海量数据将自下而上的产生,在传统下行大带宽的基础上,提出了上行大带宽、低时延的新需求。比如无人机、4K高清直播等需要40Mbps上传+20-40ms时延,无人采矿车需要多路30Mbps上传+30ms时延等。Z2Gednc

001ednc20190718Z2Gednc

这些种类繁多的2B新业务的需求,让5G的挑战接踵而至。Z2Gednc

5G时代新挑战

上行带宽与时延的挑战

5G NR的双工模式包括FDD和TDD。中国5G频段3.5G和2.6G,均采用TDD模式。Z2Gednc

FDD叫频分双工,上行和下行分别在两个独立的、对称的频率信道上传送。这就好像是双向车道,两个方向的车辆各行其道,互不干扰;Z2Gednc

TDD叫时分双工,上行和下行在同一频率信道上传送,两者通过时间间隔来分离。这就好像是潮汐车道,需要分时段来控制车辆通行方向。Z2Gednc

002ednc20190718Z2Gednc

5G初期,3.5G上下行时隙配比主要针对eMBB场景设计,典型采用7:3或8:2等,即整体资源70%的时间用于下行,30%的时间用于上行,因此下行单用户速率可以达到1.5Gbps,上行只有280Mbps;而手机收下行数据时,反馈ACK/NACK需要等到上行时隙到来才能发送,因此造成7:3配比下最大时延约4.2ms,平均时延约2.5ms。Z2Gednc

随着5G 2B业务发展,下行体验不变的情况下大幅提升上行体验并缩短时延,是对网络提出的新的需求和挑战。Z2Gednc

上行覆盖的挑战

无线网络覆盖的短板在上行。基站功率可达200W,基站向手机发送信号时,下行覆盖距离不用担心。但手机的发射功率只有0.2W,手机向基站发射信号时,上行覆盖距离有限。Z2Gednc

003ednc20190718Z2Gednc

这就好比基站发射信号像用高音大喇叭喊话可以传几公里,手机发射信号像靠嘴喊只能传几百米,双方通信的距离就只能以手机发射信号的距离为准。 Z2Gednc

而且频段越高,覆盖距离越短,3.5G频段相比4G主力频段1.8G/2.1G频段覆盖少50%。Z2Gednc

怎么办?Z2Gednc

目前业界主要的解决方案有两种,一种是采用TDD +FDD的载波聚合技术(CA),一种是将FDD低频的上行频段做补充的技术(SUL)。其中:Z2Gednc

上行CA:在3.5G基础上增开低频通道做上行,让流量同时承载于高频段+低频段,提升覆盖和体验。但CA技术存在两大问题:一是两个频段上行只能各占一个通道,导致3.5G频段无法充分发挥双通道大带宽优势,同时每个通道功率小于20dbm,导致上行收缩3dB,二是终端产业发展缓慢,目前无TDD+FDD上行载波聚合的终端并无任何实现路标。Z2Gednc

SUL:在远点3.5G上行无覆盖的地方增开低频做上行,高频段上传输5G下行,在低频上传输5G上行,从而提升5G上行覆盖。SUL虽然解决了上行覆盖问题,但用户在近中点依然只使用3.5G的上下行频谱,对于近中点用户体验和时延无任何改善。Z2Gednc

还有没有更好办法?几天前,中国电信和华为在MWC2019上海展发布会上联合提出了一种新的解决方案,叫5G超级上行。Z2Gednc

超级上行,光听名字就让人感觉很牛掰的样子,它的背后到底是啥原理?Z2Gednc

啥叫超级上行? 

提升上行带宽 缩短网络时延

5G TDD 3.5G上行带宽不够,就用FDD上行带宽来补充,通过TDD+FDD的方式合力提升上行吞吐率,并缩短时延。Z2Gednc

这就相当于加开了一条FDD上行车道,从此上行车辆不用分时段限行,全时段畅通无阻。Z2Gednc

004ednc20190718Z2Gednc

与上行CA和SUL不同的是,当3.5G频段传送上行数据时,FDD上行不传送数据。这样可以充分利用3.5G 100M大带宽和终端双通道发射的优势提升上行吞吐率(3.5G 100Mhz+终端双通道发射 VS  FDD 20Mhz+终端单通道发射),同时确保每个通道最大发射功率达到23dBm,提升3dB覆盖。Z2Gednc

当3.5G传送下行数据时,FDD传送上行数据,从而实现了FDD和TDD时隙级的转换,保证全时隙均有上行数据传送。Z2Gednc

从时域图上来看,它们就是这样子的:Z2Gednc

005ednc20190718Z2Gednc

从速率上分析,3.5G 64QAM上行峰值约为280Mbps,2.1G 64QAM上行速率约为90Mbps。超级上行打开后,理论上行峰值速率可达到280+0.7*90=343Mbps,速率提升20%。Z2Gednc

从时延上分析,笔者从发布会上的信息了解到,由于ACK/NACK反馈更加及时,可以使TDD的时延从最大4.2ms降低到2ms以内,时延降低60%。Z2Gednc

增强上行覆盖

3.5G上行覆盖受限,当终端远离基站,离开3.5G上行覆盖范围时,超级上行可以使用FDD低频段,来补齐TDD上行覆盖短板,从而扩大覆盖范围。Z2Gednc

006ednc20190718Z2Gednc

超级上行在提升上行速率的同时,也会更及时准确的对下行数据进行反馈,带来下行速率的提升。Z2Gednc

从发布会现场展示的数据来看,采用超级上行后,手机在覆盖边缘的上行速率提升高达4-5倍。Z2Gednc

简单的讲,所谓超级上行,就是将TDD和FDD协同、高频和低频互补、时域和频域聚合,充分发挥3.5G大带宽能力和FDD频段低、穿透能力强的特点,既提升了上行带宽,又提升了上行覆盖,同时缩短网络时延。它是无线通信首个时频结合的技术,是面向2B/2C市场的最优速率/时延解决方案,是无线通信又一个里程碑式的创新,具有跨时代的意义。Z2Gednc

附:几种上行增强技术关键指标对比Z2Gednc

007ednc20190718Z2Gednc

面向5G时代,远程控制、远程医疗、智慧安防、智能工厂、视频直播等各种各样的5G应用都需上行低时延、大带宽能力来支撑。毫不夸张的讲,只有提升网络上行能力,才能真正实现“5G改变社会“的梦想。Z2Gednc

当前超级上行解决方案需要从芯片、终端、基站等端到端能力支持,为此,中国电信在MWC上呼吁全产业链的合作伙伴共同参与技术验证、部署和应用,全力支持超级上行技术落地。Z2Gednc

(授权转发自网优雇佣军公众号Z2Gednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 打造下一代家用机器人:精心构建智能化、集成化和电源优 ​​​​​​​今天的家用机器人不仅仅是工具,它们已经成为人们的生活伙伴,为日常生活增添了便利性和互动性。设计这些结构紧凑、功能强大的机器需要克服连接性、电源和外形尺寸等方面的严峻挑战,每一次突破都使我们更接近全面集成的智能家居体验···
  • 用LM337改造,让PWM DAC获得1.5 A输出能力 DAC是一种低功耗设备,其功率和电流输出能力仅限于毫瓦和毫安范围。当然,从根本上讲,它们没有理由不与合适的功率输出级配合使用,这确实也是常见的实际做法。不过,为了好玩,这个设计实例采用了不同的供电方式···
  • 意法半导体:让可持续世界从概念变为现实 最近,意法半导体人力资源和企业社会责任总裁Rajita D’Souza分享了意法半导体的可持续发展战略和近期工作重点···
  • 如何制作双变频的航空波段接收机? 随着互联网的发展,中波和短波频段的接收机已成为过去式,更不用说长波了。不过也许在无线电领域中最有趣的活动之一就是收听服务发射机,对于我这个与航空相关的人来说,主要指的是飞机的发射机和空中交通管制塔···
  • 用4200A和矩阵开关搭建自动智能的可靠性评估平台 在现代ULSI电路中沟道热载流子(CHC)诱导的退化是一个重要的与可靠性相关的问题···
  • 新一代MCU向着边缘AI和实时控制发展 在工业和汽车领域,电机驱动和数字电源转换是典型的实时控制系统,要求处理器具有高实时性和强大的数学计算与处理能力。这些应用需要优质的ADC和PWM功能,并通过联动机制,形成高效、有机的实时控制系统。
  • 英特尔Ultra处理器,用普通内存也能超频到10000 MT/s+? 目前内存超频的世界记录是12666MT/s,而想要达成这样的频率不光需要降低CPU频率,还需要辅助液氮等特殊的冷却方案,对内存进行降温。但已有主板可以在没有特殊冷却方案的情况下,超频到10000 MT/s以上···
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了