广告

运算放大器的输入和输出电压范围到底有多大?

2019-08-13 10:25:32 Bruce Trump 资深模拟工程师 阅读:
我们常常会收到一些与电源有关的应用问题,询问我们运算放大器的输入和输出电压范围到底有多大。既然大家存在这方面的疑惑,那么我们就利用这篇文章来为大家解疑释惑……

我们常常会收到一些与电源有关的应用问题,询问我们运算放大器的输入和输出电压范围到底有多大。既然大家存在这方面的疑惑,那么我们就利用这篇文章来为大家解疑释惑:iJEednc

首先,常见运算放大器并没有接地端。标准运算放大器“不知道”接地的位置,因此它也就无从知道其工作电源是一个双电源(±)还是一个单电源。只要电源输入和输出电压在其工作范围以内,就不会出问题。iJEednc

下面是我们需要考虑的三个重要电压范围:iJEednc

1、总电源电压范围。它是两个电源端之间的总电压。例如,30V 的总电压范围为±15V。再如,某个运算放大器的工作电压范围可能为 6V 到 36V。在低压极端条件下,它可能为 ±3V 或者 +6V。在高压极端条件下,它可能为 ±18V 或者 +36V,甚至是-6V/+30V。没错,如果您留心阅读下面的第 2 点和第 3 点,会发现使用非平衡电源也是可以的。iJEednc

2、输入共模电压范围(C-M 范围)一般是相对于正负电源电压而言的,如图 1所示。使用类似于方程式的方法表示时,假设运算放大器的 C-M 范围可以描述为负轨以上 2V 到正轨以下 2.5V,表示方法为:(V-)+2V 到 (V+)–2.5V。iJEednc

3、同样,输出电压范围(即输出动态范围性能)是相对于轨电压而言的。这时,它可以表示为 (V-)+1V 到 (V+)–1.5V。iJEednc

这些例子(图 1、2和3)可以运用一个 G=1 缓冲器配置结构进行说明。重点是,图 1 所示例子的输出范围大小被限定为负轨 2V 和正轨 2.5V,原因是输入 C-M 范围受限。在高增益条件下,可能会需要配置这种运算放大器,以达到其最大输出电压范围。iJEednc

001ednc20190813iJEednc

图 1 所示的例子是双±电源常用的运算放大器典型结构。虽然我们不把它称作“单电源”,但是它的确可以通过将电源保持在规定范围内实现单电源工作。 图 2 显示了一种所谓的单电源运算放大器。它拥有一个 C-M 范围,该范围可以扩展至负轨,但通常会稍低于负轨。这样,它便可以应用于更多电压接近零的电路中。因此,尽管不被称为“单电源”的运算放大器可以用于某些单电源电路中,但真正的单电源型运算放大器在这些应用中则更加常见。iJEednc

002ednc20190813iJEednc

在这种 G=1 缓冲器电路中,这种运算放大器可从 V-轨(受限于输出大小)得到0.5V 的输出动态范围,并从 V-轨(受限于输入 C-M 范围)得到 2.2V 的输出动态范围。 图 3 显示了一个轨至轨运算放大器。它工作时,输入电压可以等于甚至略微大于两个电源电压轨,如图 3 所示。轨至轨输出意味着,输出电压可以非常接近于轨,但通常在电源轨的 10mV 到 100mV 范围内。一些运算放大器标声称只有一个轨至轨输出,缺少图 3 所示输入特性。轨至轨运算放大器用于单 5V 电源和单 5V 以下电源的情况非常普遍,因为它们可在有限电源电压范围下最大化信号电压输出的性能。iJEednc

003ednc20190813iJEednc

轨至轨运算放大器非常诱人,因为它们放宽了信号电压限制,但是,它们并非总是我们的最佳选择。同我们生活中的其他选择一样,它在其他性能方面通常会有一些折扣。但是,这同时就是你作为一名模拟设计人员的价值所在。我们的生活充满了各种复杂的问题和选择,但我们仍然对它充满热爱。iJEednc

本文转载自《看一个TI老工程师如何驯服精密放大器iJEednc

 iJEednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 没有优质探头,示波器 ADC 分辨率再高也无意义 为了实现准确的信号测量,示波器必须通过探头连接到被测电子电路。探头发挥着重要作用,能够确保到达示波器的信号无杂质、不失真,且尽可能接近电路中流通的原始信号···
  • 一起来简单聊聊考毕兹振荡器 Colpitts振荡器又称考毕兹振荡器,是由美国电机工程师艾德温·考毕兹于1918年发明的一种LC振荡器···
  • 评估空间音频 - 第2部分 - 创建和策划测试内容 任何音频工程师的重要工具之一,就是拥有一套精心挑选的测试内容。这一习惯值得每个人学习,关键在于所选的音频必须是自己非常熟悉的,特别是在声音的表现上。因此,通过在多种播放系统上聆听这些音频,可以获得许多有价值的信息,因为您的耳朵对它应该是什么样的声音有着深刻的理解···
  • 电动压缩机设计-SiC模块篇 电动压缩机是电动汽车热管理的核心部件,除了可以提高车厢内的环境舒适度(制冷,制热)以外,对电驱动系统的温度控制发挥着重要作用,对电池的使用寿命、充电速度和续航里程都至关重要···
  • 评估空间音频 - 第1部分 - 评估标准与挑战 “空间音频”是一个广泛的术语,描述一系列音频播放技术,它的主要目标是让我们在听声音时,能像在现实生活中一样体验三维音效···
  • 如何控制你的脉冲——第二部分 在本DI的第一部分中,我们了解了如何门控振荡器以生成表现良好的脉冲。现在,我们将了解如何将这个想法扩展到生成表现良好的阶跃函数或非常平滑的方波···
  • 如何控制你的脉冲——第一部分 在现实世界中,最好的测试脉冲来自任意波形发生器。而有一种较老的技术是对窄矩形脉冲进行滤波,但如果改变脉冲宽度,滤波器的特性也需要改变以保持脉冲形状。本文详述的方法通过生成升余弦脉冲(不要与升余弦滤波器混淆)来避免该问题,这些脉冲足够接近理想值,因此非常有趣···
  • 安森美用什么驱动可持续的未来:电源、智能感知,还是碳化 近日,全球领先的半导体方案供应商安森美参加了深圳国际电力元件、可再生能源管理展览会(PCIM Asia 2024),并在展会期间举行了媒体交流会,主题为“创新,为了更美好的未来”。会议聚焦安森美在电源管理、智能感知和可持续发展领域的最新技术、解决方案和战略布局,并深入探讨了产品技术细节···
  • QSPICE:行为电阻器(第11部分) QSPICE凭借其可建模的电压和电流源以及行为电阻,在电路建模方面提供了强大的灵活性。
  • 揭密激光测距仪内部结构 基于激光的测距仪最初仅限于精装版工具套装中,如今已普及于一般工具箱装备中。本期拆解的这款3合1测距仪中还包括了激光测量、卷尺以及圆附件…
  • SiC MOSFET栅极应力测试,一文带你了解 了解SiC MOSFET等半导体器件的失效模式是创建筛选、鉴定和可靠性测试的关键。
  • 以5G播送电视:聪明还是愚蠢? 5G TV是一个绝妙的想法,还是纯粹的机会主义?它是否能善加利用有限的频谱资源?
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了