德国亥姆霍兹德累斯顿罗森多夫研究中心(HZDR)的物理学家,与德累斯顿的莱布尼兹固态和材料研究所(IFW)和格拉斯哥大学的研究人员合作,共同致力于磁性纳米结构的工程制造,并能够在纳米级尺寸上调整材料的属性。科学家在HZDR离子束研究中心使用特殊的显微镜来实现这一目标。该显微镜的超薄离子束能够在样品材料中产生稳定、周期性排列的纳米磁体。该装置还可用于优化碳纳米管的磁性。研究人员相关的研究成果近期发表于权威期刊Small的两篇文章中。
HZDR研究人员Rantej Bali博士、Kilian Lenz博士和Gregor Hlawacek博士介绍说:“实现纳米级尺寸的材料磁性可调,为制造最新型的电子元件提供了巨大潜能。我们在磁性纳米结构方面试用了各种方法,所有的方法都涉及到离子束。例如,我们用离子束轰击非铁磁性的铁-铝合金,通过离子碰撞去除几百个原子。当合金中的原子重新排列时,相邻的磁性铁原子的数量增加了从而产生了磁性。于是,在离子束轰击部位附近的合金就变成了磁体。这种方法能够让研究人员在原本是非铁磁性的薄膜材料中局部雕刻纳米磁体。
HZDR科学家在他们的最新研究工作中,发现离子束诱发的晶格无序也会增加底层晶格结构的体积,但是在空间的各个方向上分布并非均匀。晶格畸变也影响磁性能。例如,在细长的磁条中,被期望的磁化方向是沿着长轴方向,就像常规条形磁铁中的典型情况。然而,由于纳米磁体中的晶格畸变,将导致横向的磁化分量。结果是净磁矩大小趋向于以周期性方式“弯曲”偏离磁体的长度,如图1所示。这些稳定的、周期性的磁畴也可以在弯曲的磁体中可靠地形成,并可能在微型磁传感器中得到应用。
图1 磁条的STEM-DPC图像。不同宽度磁条的磁畴结构,宽度w分别为a)1.1μm,b)660nm,c)410nm,d)295nm,e)195nm,f)30nm。沿着长度测量的磁畴尺寸,磁畴与宽度的函数关系显示在g)中。右上方色盘为a - f中表示力矩方向的色码。
在HZDR氦离子显微镜中,物理学家利用稀有气体产生极细的离子束,因此具有非常高的精度。“我们的离子束直径只有几个原子的宽度,”参与氦离子显微镜实验的Gregor Hlawacek解释说,“根据所使用的稀有气体,我们可以通过去除原子来改变被轰击材料的特性或形态。”尽管氦离子显微镜以氦离子为名,但它不仅限于使用氦气。在他们的最新实验中,研究人员使用了比氦气重的氖气,因此对要变性的材料可以产生更强的影响。通过与格拉斯哥大学的合作,HZDR的科学家还能够使用他们位于其材料和凝聚态物理中心的透射电子显微镜。
Rantej Bali实验使用氖离子束作为刻画磁体的“笔”,Bali对他之前在HZDR负责的DFG项目的研究结果总结道:“离子束可以制作任何形状或形式的磁性纳米结构,这些结构可嵌入在材料中,并且仅由它们的磁性和晶体特性定义。”
另一方面,Kilian Lenz使用聚焦离子束操纵方法,通过改变纳米结构本身的几何形状来优化所需的材料性能。所使用的氖离子束的直径只有2 nm。在轰击点,材料的不均匀部分或材料边缘能够以此尺寸被去除。Lenz说:“我们用含有类圆柱形磁性铁芯的碳纳米管来研究这个问题。这些纳米管的结构和几何形状可以在氦离子显微镜中进行修整和优化。”
研究人员利用一种微操纵器分离直径为70 nm、长度为10 μm的单个碳纳米管,并将其放置在微谐振器中进行测量,如图2。Lenz解释说:“德累斯顿莱布尼兹固态和材料研究所的团队人员为我们开发了这个极其复杂的操纵过程。”通过将聚焦离子束切割与铁芯铁磁共振测量的独特组合,Lenz带领的研究团队得以深入了解这种近乎完美的磁性结构,从而揭示纳米管中铁芯的特性。
图2 a)提取单个铁芯碳纳米管(FeCNT);b)SEM图像:使用微操纵器的钨探针将FeCNT放置到微谐振器中;c)典型FeCNT的TEM图像:中心为铁芯结构(深色),周围多层结构为CNT(灰色),存在少量缺陷;d,e)高分辨率TEM图像:测量了单晶bcc-Fe芯直径和CNT壁间距。
将来,HZDR的离子束物理和材料研究所将继续探索使用聚焦离子束对纳米磁性材料特性进行定向操纵的方法。科学家认为,他们的方法及其调整的纳米级材料,将在自旋电子学应用以及创新传感器件或存储介质制造方面拥有巨大的发展潜力。
(来源:微迷;责编:Demi Xia)