怎样消除这些干扰呢?幸运的是,由于发射信号是已知的,那么就可以用发射信号作为参考来消除自干扰。但是,参考信号在数字域比较容易获得,当数字信号转换为模拟信号后,由于线性失真和非线性失真的影响,就很难从中获得参考。因此,全双工要消除自干扰,RF域是最大的挑战。目前自干扰消除技术正在不断进步,但实现复杂度和成本太高。
解决该问题的一个办法是,分离发射和接收天线,将它们彼此间隔安装,再通过天线旁瓣抑制等办法来实现去耦,再加上空间路径损耗,这样可以大大减少自干扰。
不过,这种办法在基站侧可行,但在终端侧,由于受限于空间,是不可行的。因此,最终全双工技术可能会在基站侧部署,而终端侧或将继续采用TDD双工技术。
除了时间、频率和极化以外,还有新的可利用的无线电波正交状态吗?那就是电磁辐射的轨道角动量OAM。
受螺旋相位因子的影响,具有OAM的电磁波被称为“涡旋电磁波”,沿着传播方向呈螺旋状。具有OAM的电磁波的相位旋转结构称为OAM模式。具有不同OAM模式的无线电波相互正交,互不干扰,因此在同一频点上可传输多路调制在不同的OAM模式上的信号,从而提升频谱效率。理论上讲,有几十个不同的OAM值调制无线信号,可以有效地将频谱效率提升几十倍。
OAM复用原理
但是,到目前为止,OAM的实际演示仅限于近场应用。大气湍流会使无线电波的OAM失真,引起串扰,因此OAM要应用于蜂窝网络还有很多工作要做。
机器学习可用于优化5G空口,来提高频谱效率。
5G NR的所有层都可以通过机器学习来优化,比如,机器学习可优化物理层的调制、FEC、MIMO、信号检测、功控和波束赋形,机器学习可优化层二的调度、HARQ和流量控制,机器学习还可优化层三的移动性管理、负载管理和连接管理等。机器学习,尤其是深度强化学习,可以基于流量状况和无线环境动态地作出优化决策,以使网络始终保持最佳状态。
以调制方式为例,更高阶的调制方式可以提升传输速率,比如,在4G时代我们希望所有的UE都能最大化使用256QAM,以获得更好频谱效率。但在现实中这是不可能的,因为随着SINR降低(比如UE位于小区边缘时),越高阶的QAM星座图会失真,使得接收端越难解调。而有了机器学习后,可以通过学习复杂的失真模式,来实现以较低的SINR解调更高阶的调制方式,从而可提升系统的频谱效率。
(本文授权转载在公众号
)