广告

如何设计符合整车厂要求的CAN物理层接口电路?

2019-12-13 09:38:36 高杨 阅读:
CAN的物理层从结构上可分为三层,分别是物理信号层(PLS)、物理介质附件(PMA)层和介质从属接口(MDI)层。PMA和MDI两层有很多不同的国际或行业标准,这就使得不同零部件供应商电路在物理层接口上都各不相同。因此,如何设计符合整车厂要求的物理层接口电路,就成为需要讨论的一个重要主题。

CAN是控制器局域网络(Controller Area Network,CAN)的简称,目前已经成为车载控制器的必备接口和标准协议,目前有着广泛的应用。由于CAN这个主题的涉及范围比较多,我们仅仅对物理层展开讨论。QrZednc

CAN总线的物理层是将车载控制器连接至总线的驱动电路。物理层定义了物理数据在总线上各节点间的传输过程,主要是连接介质、线路电气特性、数据的编码/解码、位定时和同步的实施标准。BOSCH CAN基本上没有对物理层进行定义,但基于CAN的ISO标准对物理层进行了定义,设计车载控制器的CAN电路时,物理层电路具有很大的选择余地。QrZednc

物理层主要取决于传输速度的要求。从物理结构上看,CAN的物理层可分为三层,分别是物理信号层(Physical Layer Signaling,PLS)、物理介质附件(Physical Media Attachment,PMA)层和介质从属接口(Media Dependent Interface,MDI)层。其中PLS连同数据链路层功能由CAN控制器完成,PMA层功能由CAN收发器完成,MDI层定义了电缆和连接器的特性。PMA和MDI两层有很多不同的国际或行业标准,比较流行的是ISO11898协议定义的高速CAN发送/接收器标准,但也可自行定义,这就使得不同零部件供应商电路在物理层接口上都各不相同。QrZednc

正因为如此,如何设计符合整车厂要求的物理层接口电路,从而能够通过整车厂的设计评审及工程验收,就成为需要讨论的一个重要主题。QrZednc

本文讨论三种CAN物理层接口电路的设计:QrZednc

(1)带有齐纳二极管的CAN物理层接口;QrZednc

(2)带有压敏电阻器的CAN物理层接口;QrZednc

(3)带有滤波器的CAN物理层接口(Filter Termination)。QrZednc

can-1QrZednc

图1:带有齐纳二极管的CAN物理层接口。QrZednc

(1)带有齐纳二极管的CAN物理层接口

1可以看到,带有齐纳二极管的CAN物理层接口可以划分成三个元件功能区域,分别是终端元件、可选元件和ESD元件。终端元件中包含R1、R2和C4,可选元件是0Ω的电阻,ESD元件包含C2、C3、Z1和Z2。下面就详细介绍每一个元器件的作用(见1)和设计注意事项。QrZednc

can-t1QrZednc

表1:带有齐纳二极管的CAN物理层接口的元器件的作用。QrZednc

下面来介绍设计注意事项:QrZednc

C1(VCC):在这里,C1有两种可能的放置位置,如果是在控制器内部的C1,只需要满足容量>90nF,电压>16V耐压等级就可以。QrZednc

C1(VBAT):如果是第二种情况,即这里是一颗SBC(系统基础芯片),则是有更高的选型要求。容量>90nF±10%,电压>100V耐压,注意这时候C1的电容是直接接到电池的正端,需要采用满足Flexisafe或者等效功能的电容来设计。QrZednc

C2、C3:这两个电容在这里是作为ESD的防护电容来工作的。需要选择容值在100pF±10%,额定工作电压>50V的电容。还需要注意的是在PCB布线的时候,C2、C3必须尽可能地靠近连接器(小于10mm),这样才有更好的ESD保护效果。QrZednc

Z1、Z2:这两个齐纳二极管同样是作为ESD保护的作用。需要选用击穿电压在27V的齐纳二极管,这样才可以使外部的高电压在经过齐纳二极管到达CAN_H和CAN_L的PIN脚电压时不至于击穿CAN收发器。以TJA1054A(NXP公司)为例,数据手册(见2)中显示CAN_H和CAN_L的最大值耐受电压为+40V,最小值耐受电压为-27V,这也就是为何要用双向的齐纳二极管将外部电压钳位在±27V之间的原因。还需要注意的是在PCB布线的时候,Z1、Z2必须尽可能靠近连接器(小于10mm),这样才有更好的ESD保护效果。QrZednc

can-2QrZednc

图2:TJA1054A(NXP公司)的数据手册(部分)。QrZednc

R1、R2:这两个是CAN网络的终端电阻,需要选择±1%精度的电阻,并且要保证R1+R2=118–132Ω(包括容差,这个值不同的整车厂有不同的要求,此处的值来自于Ford的需求标准),考虑到R1和R2会在最差情况下短路到电源和降等级设计的要求,需要将R1和R2的额定功率选为250mW。QrZednc

C4:终端滤波容,用来滤除在终端电阻R1和R2上的耦合噪声。此处选择4.7nF±10%、50V的耐压等级。QrZednc

can-3QrZednc

图3:带有压敏电阻器的CAN物理层接口。QrZednc

(2)带有压敏电阻器的CAN物理层接口

3可以看到,带有压敏电阻器的CAN物理层接口可以划分成三个元件功能区域,分别是终端元件、可选元件和ESD元件。终端元件中包含R1、R2和C4,可选元件是个0W的电阻,ESD元件包含V1和V2。下面就详细介绍每一个元器件的作用(见2)和设计注意事项。QrZednc

can-t2QrZednc

表2:带有压敏电阻器的CAN物理层接口元器件的作用。QrZednc

下面来介绍设计注意事项:QrZednc

C1(VCC):参照第(1)部分带有齐纳二极管的CAN物理层接口对C1(VCC)的说明。QrZednc

C1(VBAT):参照第(1)部分带有齐纳二极管的CAN物理层接口对C1(VBAT)的说明。QrZednc

V1、V2:这两个压敏电阻器是作为ESD保护作用。需要选用击穿电压在±27V的压敏电阻器,这样才可以使外部的高电压在经过压敏电阻器到达CAN_H和CAN_L的PIN脚电压时不至于击穿CAN收发器。同样以TJA1054A为例,数据手册(见2)中显示CAN_H和CAN_L的最大值耐受电压为+40V,最小值耐受电压为-27V,压敏电阻器将外部电压钳位在±27V之间。还需要注意的是在PCB布线的时候,V1、V2必须尽可能靠近连接器(小于10mm),这样才有更好的ESD保护效果。QrZednc

R1、R2:参照第(1)部分带有齐纳二极管的CAN物理层接口对R1、R2的说明。QrZednc

C4:参照第(1)部分带有齐纳二极管的CAN物理层接口对C4的说明。QrZednc

can-4QrZednc

图4:带有滤波器的CAN物理层接口。QrZednc

(3)带有滤波器的CAN物理层接口

4可以看到,带有滤波器的CAN物理层接口可以划分成两个元件功能区域,分别是终端元件和ESD元件(这个与带有齐纳二极管和带有压敏电阻器的接口电路有所不同)。终端元件中包含C2、C3和R1,ESD元件包含C4、C5、Z1和Z2。但目前此类CAN物理层接口不是很常见。下面就详细介绍每一个元器件的作用(见3)和设计注意事项。QrZednc

can-t3QrZednc

表3:带有滤波器的CAN物理层接口的元器件的作用。QrZednc

下面来介绍设计注意事项:QrZednc

C1(VCC):参照第(1)部分带有齐纳二极管的CAN物理层接口对C1(VCC)的说明。QrZednc

C1(VBAT):参照第(1)部分带有齐纳二极管的CAN物理层接口对C1(VBAT)的说明。QrZednc

C2、C3:注意此处的电容为终端电容,不是ESD电容。需要选用220pF±10%,耐压等级>50V的器件。QrZednc

C4、C5:参照第(1)部分带有齐纳二极管的CAN物理层接口对C2、C3的说明。QrZednc

R1:注意此处只用了一个终端电阻,其取值范围在59~66Ω之间(包括容差,这个值不同的整车厂有不同的要求,此处的值来自于Ford的需求标准),考虑到R1会在最差情况下短路到电源和降等级设计的要求,需要将R1的额定功率选为250mW。QrZednc

Z1、Z2:参照第(1)部分带有齐纳二极管的CAN物理层接口对Z1、Z2的说明。QrZednc

综上所述,除了以上的设计需求,还有以下的一些注意事项(并不区分先后顺序和优先级)在设计中必须同等对待。QrZednc

● CAN收发器的布局位置必须尽可能地靠近车载控制器的连接器,其他的IC不允许放置在CAN收发器的附近。QrZednc

● CAN收发器的地,以及输入电容、齐纳二极管和压敏电阻器的地都应该和车载控制器共地。QrZednc

● C1电容必须尽可能地靠近CAN收发器的电源脚(VCC/VBAT)。QrZednc

● C1、C2、C3和C4必须是MLCC电容或等效的器件。QrZednc

● R1和R2必须用单个电阻来满足阻值以及容差的要求,不允许用多个串联的方式来满足阻值的要求。QrZednc

● CAN_H/CAN_L的引脚到达车载控制器的连接器必须尽可能地短而且保持平行(side-by-side),可靠的布线规则是让CAN_H/CAN_L、TXD和RXD保持在PCB的同一层。QrZednc

● 所有ESD电容必须尽可能地靠近车载控制器的连接器。QrZednc

本文为《电子技术设计》2019年12月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里QrZednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 很实用。
高杨
近20年在汽车电子TOP10公司经验,特别是在车载控制器领域(多媒体、车身、驾驶辅助及VCU)。曾任职博世汽车专家级工程师,超过10年在汽车零部件(博世和大陆汽车),5+年汽车半导体(德州仪器和英飞凌),历任多种资深(系统、设计、产品)工程师职务。丰富的平台开发(从0到1)及产品开发的工程经验和技术积累。 Ford SYNC第一代的核心硬件工程师,定义和开发了德州仪器(TI)第一款智能高边驱动器(TPS1H100-Q1),填补了公司在汽车电子市场的技术路线和市场空白。 整理和标准化了与设计开发的技术文件,可以直接用于指导设计及融入公司的文件体系中,满足体系审查要求和提高公司的设计流程和管理水平。硬件设计流程管理的模板(45+篇),硬件设计评审和检查清单模板(50+篇)。 企业内训师认证(TTT) ,超过2500页汽车电子设计培训内容PPT,满足从入门、中级及高级汽车电子设计的培训要求,目前在4家企业内部实施过培训,收到了很好的反馈。 目前获得13件汽车电子专利(截止2019年12月)。《EDN电子技术设计》汽车电子专栏作者ednchina.com/author/gaoyang
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 意法半导体:让可持续世界从概念变为现实 最近,意法半导体人力资源和企业社会责任总裁Rajita D’Souza分享了意法半导体的可持续发展战略和近期工作重点···
  • 新一代MCU向着边缘AI和实时控制发展 在工业和汽车领域,电机驱动和数字电源转换是典型的实时控制系统,要求处理器具有高实时性和强大的数学计算与处理能力。这些应用需要优质的ADC和PWM功能,并通过联动机制,形成高效、有机的实时控制系统。
  • 从碳化硅到机器人:ST描绘未来工业发展蓝图 意法半导体(ST)第六届工业峰会于2024年10月29日召开,延续以“激发智能,持续创新”为主题,聚焦工业市场前沿技术和解决方案。峰会演讲嘉宾深入探讨了电源与能源、电机控制、自动化等领域的技术发展趋势和ST的创新成果,为构建更可持续的未来描绘了宏伟蓝图···
  • Arm年度技术大会:2025年底预计将有1,000亿台具备AI能力 近日,作为 Arm 一年一度的技术盛会,2024 年度技术大会 (Arm Tech Symposia 2024) 在上海和深圳成功举办。这次的大会十分特殊,以往 Arm 年度技术大会往往会专注于特定的应用市场,而今年的大会只聚焦于一个领域——AI···
  • AI 驱动,Arm 加速实现软件定义汽车的未来 我们正在迎来一个全新的汽车时代,即软件定义汽车 (SDV) 的时代···
  • 汽车天线进化史,那些不得不说的故事 快进到21世纪,人们对无线连接的期望大幅提高。我们有了全球导航卫星系统(GNSS)、4G、5G、汽车雷达等等。显然,将汽车变成一个拥有大量天线的天线“农场”既不可取,也不现实···
  • 纤维器件及其阵列电学测试方案详解 纤维器件是一种以纤维为基础结构形态的功能性元件。呈现纤维状,有着细长的外观,直径通常较为细小,长度则根据具体设计和应用需求可长可短···
  • 带预分频器和预累加器的80MHz VFC 是什么让Kid Kong能够以近似King Kong最大输出频率的频率工作,而复杂性却比它低得多?
  • 下一代汽车微控制器:意法半导体技术解析 意法半导体(ST)深耕汽车市场已有30余年的历史,其产品和解决方案覆盖普通车辆的大多数应用系统。随着市场的发展,意法半导体的产品也在不断升级改进,其中的重要产品汽车微控制器(MCU)也不例外···
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了