图1显示了使用FET控制器件的B类放大器的通用电路图。
图1:使用FET控制器件的B类放大器。
许多年前,在工程学校,我们了解到这种B类放大器的最大效率为78.5%。详细的推导表明,B类放大器效率的通用公式为:
其中,π=3.14159…
Vp=输出正弦波的峰值电压(Vpsin(ωt));
Vdc=直流电源电压(见图1)。
由于放大器无法产生大于其自身电源电压的输出电压,因此Vp实际上不能超过Vdc。因此,当Vp=Vdc时,效率最大:
最大效率=π/4=0.785=78.5%
公式1求得的最大效率相对于Vp=Vdc会适当减少,我们多年以前在学校中学到的知识得到了验证。在这种情况下,传输器件上的电压最小,则效率最高。当Vp<Vdc时,传输晶体管上的电压将会增加,这会产生更多的热量,而使电路效率降低。
这个公式是假定将恒定幅度的正弦输出电压输送到负载。例如,Industrial Test Equipment公司的变频器产品线中就有以恒定幅度正弦输出电压工作的放大器。这类设备将本地电源线的电压和频率转换为不同的电压和/或频率。500C型号可以将60Hz转换为50Hz,反之亦然,将50Hz转换为60Hz,并在两种情况下为负载提供恒定的115VAC。
但是,使Vp=Vdc,会使放大器过于靠近边界条件。Vdc或Vp的微小变化,可能导致波形的顶部被削掉。换句话说,放大器不能驱动到Vp高于Vdc的程度。削波这种结果通常是不可接受的。Vp=Vdc不是实际的工作点。
考虑到10%的裕度,可以将最大Vp选择为0.9Vdc,这样效率就变成了:
效率=π/4×0.9Vdc/Vdc=70.7%
这就是B类放大器工作在恒定输出电压下的更实际的效率水平。
与B类放大器相比,使用开关(D类)放大器可以提高效率。然而,这会引入开关噪声并使电路变得更加复杂。B类电路几乎没有噪声,电路更简单,并且具有完全的正弦波形。
接下来考虑效率的一般公式:
效率=η=Pload/(Pdevice+Pload)
其中:
Pload=输送到负载的功率(W)
Pdevice=需要从FET耗散的功率
将这个公式变形可以得到:
这样就可以计算系统所需的散热量。例如,假设η=70.7%,Pload=100W,则500C型号所需的散热量为:
Pdevice=500×(1-0.707)/0.707=207W
这是在系统提供全输出功率(即500W)时的耗散。在较低的输出功率下,功耗成比例地降低。例如,在50W的输出功率下,耗散为20.7W。
所有的B类功率放大器都会在散热器上装有一个热敏开关。当散热器温度超过70℃时,这个开关就会打开,从而关闭放大器。当散热器冷却至50℃时,该开关就会关闭,从而自动恢复正常操作。
该推导分为两个主要部分:基本公式和积分后的结果。考虑到大多数读者可能不喜欢看乏味的计算细节,这里省略了这些部分之间的分步推导。这里提供了足够的信息,以便有兴趣的人可以验证结果。
由于积分公式代表瞬时功率,这些公式还是必要。必须将所有瞬时功率相加(积分),然后除以周期(π),从而获得半个周期内的平均功率。实际上,由于正弦波输出的正半部分和负半部分是对称的,并且每半部分都向负载提供相同的功率,因此我们仅需要对正弦波的1/2个周期进行积分(图2)。
图2:公式1的推导。
从上面的例子可以得知,在Vp/Vdc=0.9的情况下,500S型号可以向负载提供500W功率,而散热量为207W(Pload=500W,Pdevice=207W)。那么,在较低的电压(即Vp/Vdc<0.9)下工作时,可以提供多少功率?
这个问题可以通过对公式2变形并用公式1代替η来解答。结果是:
继续看这个例子,令Vp/Vdc以0.1的增量从1变为0,并且令Pdevice=207W。要达到满额定功率输出,必须要加散热器耗散这么多的热量。由于有这样的散热器,我们可以将它用于所有级别的输出功率。
结果如表1所示,它使用上述公式和Excel电子表格构建。
最大负载功率(Pload)是Vp/Vdc的函数。
这里将Vp/Vdc=0.9视为最佳工作点(请参见前面的讨论)。工作在0.9<(Vp/Vdc)<1的范围内效率会更高,但这会太接近削波点。
表1:不同Vp/Vdc下的功率和效率。
该表显示,对于Vp/Vdc=0.9且耗散在207W的情况下,Pload=500W,这与先前计算的相同。随着Vp/Vdc的降低,500S型号的最大功率也会降低。例如,在Vp/Vdc=0.7时,只能提供大约250W功率,效率下降到55%。
Dana Geiger是一位电子工程师,目前在美国纽约州华盛顿港的工业测试设备公司(Industrial Test Equipment)兼职。
(原文刊登于EDN美国版,参考链接:Some thoughts on Class B amplifiers)
本文为《电子技术设计》2020年3月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里。