广告

如何满足复杂系统的高性能时序需求

2017-08-23 阅读:
时钟设备设计使用 I2C 可编程小数锁相环 (PLL)可满足高性能时序需求,这样可以产生零 PPM(百万分之一)合成误差的频率。高性能时钟 IC 具有多个时钟输出,用于驱动打印机、扫描仪和路由器等应用系统的子系统,例如处理器、FPGA、数据转换器等。此类复杂系统需要动态更新参考时钟的频率,以实现 PCIe 和以太网等其它诸多协议。

时钟设备设计使用I2C可编程小数锁相环(PLL),可满足高性能时序需求,这样可以产生零PPM(百万分之一)合成误差的频率。高性能时钟IC具有多个时钟输出,用于驱动打印机、扫描仪和路由器等应用系统的子系统,例如处理器、FPGA、数据转换器等。此类复杂系统需要动态更新参考时钟的频率,以实现 PCIe 和以太网等其它诸多协议。Z1zednc

时钟IC属于I2C从器件,需要主控制器来配置内部PLL逻辑,其控制逻辑可以写入微控制器内。作为I2C 主机,微控制器将配置写入时钟IC的内部易失性存储器并控制PLL。因此,可以通过板上MCU - IC组合进行系统时钟频率的动态更新。可编程微控制器为高性能时钟IC提供控制逻辑能力,通过减少板载 IC和板上走线使整体设计更加紧凑,并降低最终物料成本。Z1zednc

操作理论

图 1 为高性能时钟设备的基本PLL架构。该设计使用比例因子为PLL输出端口提供时钟合成。最终输出频率的基本公式为:Z1zednc

PLL_E1_201708Z1zednc

  • fREF为输入参考晶体频率(在多数应用中通常为 8 MHz 至 48 MHz)。
  • DIV_R(DIV_R1 和 DIV_R2)是输入频率参考的分频因子。此类分频器名为预分频器。
  • DIV_N 为小数 N 分频因子。
  • DIV_O(DIV-O1、DIV-O2、DIV-O3 和 DIV-O4)为输出前的后分频因子。Z1zednc

    PLL_F1_201708

图1:简化高性能时钟的 PLL 架构框图。Z1zednc

Z1zednc

图1中的橙色框图为参数,使用这些参数的方程式为可编程方程式。这些参数可以在出厂时写入时钟设备的非易失性存储器。时钟设备具有内部易失性和非易失性存储器,两个存储器互相复制其内容。非易失性存储器在出厂时已被写入所需配置,在最终应用中,当设备启动电源时,非易失性存储器的内容会被复制到易失性存储器。同时,PLL产生所需的默认时钟输出。Z1zednc

时钟IC的重要特性之一就是通过I2C接口实现运行时可编程。通过可编程功能,用户可以更改设备的易失性存储器内容以进行即时更改。只需使用适当的I2C指令,就可以通过主控制器实现用户配置文件的即时编程功能。Z1zednc

设备的非易失性存储器还可以存储预定义的多用户配置。用户可以使用频率选择 (Frequency Select, FS)功能以选择其中一个配置。该FS - 位为设备中可用的CMOS输入引脚。FS引脚应用N - 位外部 CMOS信号,然后内部选择存储在非易失性存储器中的一个配置文件,这个配置文件同样也被复制到了易失性存储器,PLL则输出不同的信号。 Z1zednc

同时,微控制器通过I2C提供数据来控制高频时钟。使用微控制器的优点是,它具有不同的通信外设和通信协议,如I2C、SPI、UART、蓝牙、ZigBee等,使得系统能够以主从配置将数据传输到其他微控制器,也可以使用一个自定义的应用传输至安卓和 iOS设备。此外,微控制器还配有各种IDE工具用于简化设计。这可以更好地证明使用 I2C指令来配置PLL参数、编写并验证定制应用程序是合适的。Z1zednc

高性能时钟的应用需求

高性能时钟IC专为消费者、工业和网络应用而设计。此类时钟IC具有多个从不同PLL导出的差分输出和单端输出,并且可以通过I2C接口实现可编程功能。此外,高性能时钟IC不仅可以支持PCI Express (PCIe) 1.0 / 2.0 / 3.0、USB 2.0 / 3.0和万兆以太网 (GbE)等关键接口标准的参考时钟。还能支持压控晶体振荡器(VCXO)和频率选择 (FS)等其他增值功能。Z1zednc

高性能时钟 IC 采用设计实现 I2C 从机模式。因此,需要一个板载 I2C 主机来控制以下可编程功能:Z1zednc

  • 通过 I2C 接口进行系统内编程
  • 通过频率选择 (FS) 引脚更新配置
  • 外部复位操作
  • 压控晶体振荡器 (VCXO) 操作

PLL_F2_201708

图 2:微控制器 - 高性能时钟接口电路。Z1zednc

Z1zednc

微控制器在时钟IC PLL控制中的作用

如图2所示,将时钟IC连接到微控制器电路。时钟IC具有内部PLL模块,其功能是提供作为固定直流电压的调谐电压 (Vtune),而调谐电压将随频段而变化。PLL 模块在输入端接收本地振荡器频率,由内部前置放大器放大信号。另外,预分频器对输入频率进行下变频,并将其作为输入传送至相位比较器。 Z1zednc

PLL_F3_201708

图 3:PLL 模块的微控制器控制。Z1zednc

Z1zednc

微控制器通过I2C发送数据到可编程分频器。该分频器也接收来自参考振荡器(例如4 MHz 晶体振荡器)的输入。相位比较器(即相位检测器)通过预分频器接收本地振荡器频率(例如87.15 MHz),还通过参考分频器和参考振荡器接收微控制器的输入(例如,87.15 MHz)。如果两个输入都匹配,相位比较器将提供 Vtune 调谐电压。一旦本地振荡器频率与微控制器频率数据之间稍有不匹配,都将无法提供调谐电压 (Vtune) 和输出。图3所示为完整的框图。Z1zednc

在微控制器的帮助下,PLL 通过调谐本地振荡器频率产生闭环,并在输出端产生调谐电压。调谐电压将从较低频率信道增加到较高频率信道。通过改变预分频器和可编程分频器的值,微控制器可以调整步长。Z1zednc

步长 =(本地振荡器频率/预分频器)X(可编程分频器/参考振荡器)Z1zednc

表 1 所示为部分配置。Z1zednc

PLL_T1_201708Z1zednc

通过 I2C 接口进行系统内编程

系统内编程可为系统设计实现快速有效的迭代。编程数据序列可通过SCL和SDA引脚传送到时钟器件,把操作顺序编程至板载微控制器(主设备)中,通过命令和数据在运行时与从机时钟进行交互。Z1zednc

此处为系统示例,其中时钟信号必须以采样率的倍数为准。该时钟频率在155.52MHz和156.25 MHz两组频率之间变动。这意味着驱动串行控制器的时钟必须能够在这两个值之间灵活切换。微控制器主设备可以访问并修改写入易失性存储器的PLL配置,从而满足这两个频率需求。Z1zednc

通过频率选择 (FS) 引脚更新配置

高性能时钟设备支持包含个性化配置的多个用户配置文件。在FS引脚转换方面,高性能时钟器件具有两个时序规格 - 快速切换和慢速切换。Z1zednc

快速切换适用于输出 ON/OFF 、输出分频值变化,以及输出 MUX 设置更改。慢速切换则适用于更改 PLL 参数(包括 PLL ON/OFF)。顾名思义,快速切换中的输出变化更快,而慢速切换的速度较慢。两种切换类型都可以打开或关闭输出,并且不出丝毫差错。图 4 所示为 FS 与输出时钟之间的时序关系。Z1zednc

PLL_F4_201708

图 4:频率选择操作。Z1zednc

Z1zednc

外部复位操作:

当外部复位生效时,时钟IC进入低功耗模式。输出和I2C总线信号处于高阻抗 (HI-Z) 状态,直到取消外部复位并完成初始化。外部复位重启易失性存储器内容,存储在非易失性存储器中的配置则被复制到易失性存储器。当需要重新初始化任意一个系统中运行的应用程序时,该功能将被使用。Z1zednc

压控晶体振荡器 (VCXO) 操作:

对某些应用而言,输出时钟频率应通过使用模拟反馈跟踪输入数据流。如图5所示,时钟IC作为大锁相环的一部分。ASIC或SoC负责跟踪输入流、计算误差并产生PWM信号(通常来说),随后将误差信息反馈至本地时钟发生器以进行频率调谐。Z1zednc

PLL_F5_201708

图5:VCXO 示例电路。Z1zednc

Z1zednc

VCXO功能能够修改PLL频率,因此频率牵引不依赖于晶体特性、温度、电压或设备工艺。VCXO调制是线性、精准调制。也可以使用时钟参考。通过微控制器的内置模拟模块,VCXO的控制逻辑精准到小数点后6位。Z1zednc

作为I2C主设备,微控制器将配置写入时钟 IC 的内部易失性存储器并控制PLL。因此,通过板载MCU-IC组合可以实现系统时钟频率的动态更新。开发人员可以使用可编程微控制器,为高性能时钟IC提供控制逻辑。这可以减少对板载IC和走线数量的需求,使得整个系统设计更加紧凑。Z1zednc

微控制器配备强大IDE工具,可以加速应用开发。集成可编程片上系统(PSoC)器件可进一步简化设计并有助于降低整体产品成本。有关高性能时钟IC设计的更多详细信息,请参阅4-PLL扩频时钟发生器入门以及扩频时钟发生器的设计最佳实践。
20160630000123Z1zednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了