广告

出色的音频性能如何实现? 即插即用的数字D类放大器少不了

2023-01-11 12:30:02 ADI杰出工程师Matt Felder 阅读:
新一代即插即用的数字D类音频放大器的性能远远优于传统的模拟D类放大器。更重要的是,数字D类放大器还具有低功耗、低复杂性、低噪声和低成本的优势。

新一代即插即用的数字D类音频放大器的性能远远优于传统的模拟D类放大器。更重要的是,数字D类放大器还具有低功耗、低复杂性、低噪声和低成本的优势。MxWednc

电子产品生产商通常使用不带滤波器的高效率模拟D类放大器来满足手机、平板电脑、家用监控和智能音箱中便携扬声器的功率需求。这些D类放大器可直接连接到电池,以尽可能地降低损耗并减少组件数量。这些放大器还可实现大于80dB的电源抑制比,这对于避免GSM通讯的217Hz干扰来说非常重要。MxWednc

模拟D类放大器一般需要在处理器侧使用DAC和线路驱动放大器(图1),这会增加芯片成本和功耗,并导致扬声器的输出噪声。这种D类放大器还要求良好的电路板布局设计,以避免信号耦合到模拟电路而导致性能下降。MxWednc

MxWednc

1.使用模拟D类放大器的常规系统。处理器DAC和线路驱动放大器会增加成本、功耗和扬声器输出噪声。MxWednc

数字D类音频放大器则不需要特殊的电路板布局设计。这些单通道D类放大器可以放置在电路板上的较远位置,以最大限度地减少电池和扬声器负载之间的走线。这些放大器不需要模拟D类放大器所必需的DAC和线路驱动放大器,可以降低尺寸和成本,设计更为简单。MxWednc

简化系统设计

大多数数字放大器接收脉冲编码调制(PCM)或I2S数据输入时,需要三根连接线:BCLK、LRCLK和DIN。PCM格式的输入不需要在处理器侧使用调制器或对数据进行上采样(图2)。较早的PCM输入的放大器需要干净的主时钟(MCLK)以生成无抖动的采样时钟,而较新的PCM输入的放大器,如MAX98357、MAX98360和MAX98365等,则不再需要MCLK输入,因此引脚数、功耗和电路复杂度都大大降低。MxWednc

MxWednc

2.PCM输入的数字D类放大器系统只需要使用三根连接线,而且处理器不需要调制器或对数据进行上采样。MxWednc

较早的数字放大器提供可调的采样速率和/或位深度,因此在某些情况下需要对放大器进行复杂的编程。新一代的数字放大器则可以自动检测各种采样速率和位深度,支持自动配置,无需任何编程。MxWednc

在多通道的实现方案中,数字D类音频放大器可以减少电路板上的外围电容和布线。PCM输入只需要BCLK、LRCLK和DIN三根连接线就可以输出立体声或8通道的TDM数据。而相比之下,模拟D类放大器一般需要两个差分输入信号共四根连接线,还需要额外的交流耦合电容(见图1和图2)。MxWednc

大多数数字放大器同时需要较低的数字电源电压(1.8V)和较高的扬声器电源电压(2.5V至5.5V)。但是使用MAX98357和MAX98360等单电源供电的D类放大器可以简化电路设计并减少元件数量。MAX98365可以采用3.0V至5.5V的单电源供电,也可以采用1.8V至5.5V和3.0V至14.0V的双电源供电。数字输入的逻辑电平独立于器件的电源电压,输入逻辑电平可以是1.2V至5.5V之间的任何值,无需逻辑电平转换器。MxWednc

抖动容差和时钟

数字D类音频放大器通常面临时钟抖动的新挑战。为了获得良好的音频质量,大部分数字输入放大器要求相当低的BCLK或MCLK的时钟抖动。数据手册通常不会具体给出抖动容差的数值,如果给出,典型值约为200ps的均方根抖动。较高的时钟抖动通常会降低放大器的动态范围或满量程THD+N性能。MxWednc

在许多系统中,处理器的基准振荡器频率不是BCLK的简单倍数,因此为放大器提供低抖动的时钟并不容易。例如,13MHz是GSM电话的常见晶振频率、27MHz则通常用于视频解决方案,这些基准频率都不是44.1kSPS或48kSPS的音频采样速率的简单倍数。因此,系统通常采用复杂的小数N分频锁相环来生成音频专用的时钟。在某些情况下,该解决方案需要单独的音频基准振荡器,这会增加系统复杂性和物料成本。MxWednc

另一种更好的解决方案是使用能容忍高时钟抖动而不降低音频性能的数字放大器。这种放大器可降低系统的复杂性。在最简单的情况下,可以使用跳周期时钟来产生BCLK,但这会产生异常高的抖动。如果跳过13MHz的基准时钟周期产生6.144MHz的BCLK(48kSPS × 128OSR),则峰值抖动可达38.4ns,均方根抖动可达22.2ns(图3),这比大多数DAC所能承受的抖动还要高出两个数量级。MxWednc

MxWednc

3.来自25MHz时钟跳周期生成12.288MHz MCLKMxWednc

然而,新型的D类音频放大器即使在这样的时钟抖动下仍具备大于103dB的动态范围性能。跳周期时钟可通过处理器上的逻辑门电路来生成。新器件不需要锁相环解决方案必需的振荡器或环路滤波器。参见图4。MxWednc

MxWednc

4.小数N分频锁相环与跳周期时钟实现MxWednc

抖动容差测试结果

测试结果表明,使用跳周期时钟时,MAX98357、MAX98360和MAX98365的动态范围不会降低。此时,器件的动态范围性能比120dB的DAC还高出20dB。Σ-Δ型DAC抖动容差的更多详细数据可参见参考文章1MxWednc

MxWednc

5.动态范围下降,跳周期时钟抖动为11.5ns rmsMxWednc

结语

数字无滤波D类音频放大器支持简单的电路实现,无需额外的I2C编程、MCLK输入、电平转换器和EMI滤波器,具有高效率、低EMI和高输出功率的特色。MAX98357和MAX98360采用WLP或QFN封装,输出功率可达3.2W。MAX98365采用WLP封装,输出功率可达17.6W。MxWednc

参考资料

1Matt Felder, Patrick Gallagher, and Brian Donoghue. “Analyzing Audio DAC Jitter Sensitivity.” EDN Network, September, 2012.MxWednc

# # #MxWednc

关于ADI公司

Analog Devices, Inc. (NASDAQ: ADI)是全球领先的半导体公司,致力于在现实世界与数字世界之间架起桥梁,以实现智能边缘领域的突破性创新。ADI提供结合模拟、数字和软件技术的解决方案,推动数字化工厂、汽车和数字医疗等领域的持续发展,应对气候变化挑战,并建立人与世界万物的可靠互联。ADI公司2022财年收入超过120亿美元,全球员工2.4万余人。携手全球12.5万家客户,ADI助力创新者不断超越一切可能。更多信息,请访问www.analog.com/cnMxWednc

关于作者

Matt Felder于2009年加入ADI公司,担任模拟设计工程师。他的工作范围包括音频DAC、音频ADC、多通道SAR ADC、音频放大器、视频DAC、FM无线电接收器和电池充电器。Matt是IEEE的高级会员,持有47项已发布的专利。他拥有德克萨斯农工大学的电气工程学士学位和德克萨斯大学奥斯汀分校的电气工程硕士学位。MxWednc

责编:Franklin
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 没有优质探头,示波器 ADC 分辨率再高也无意义 为了实现准确的信号测量,示波器必须通过探头连接到被测电子电路。探头发挥着重要作用,能够确保到达示波器的信号无杂质、不失真,且尽可能接近电路中流通的原始信号···
  • 一起来简单聊聊考毕兹振荡器 Colpitts振荡器又称考毕兹振荡器,是由美国电机工程师艾德温·考毕兹于1918年发明的一种LC振荡器···
  • 评估空间音频 - 第2部分 - 创建和策划测试内容 任何音频工程师的重要工具之一,就是拥有一套精心挑选的测试内容。这一习惯值得每个人学习,关键在于所选的音频必须是自己非常熟悉的,特别是在声音的表现上。因此,通过在多种播放系统上聆听这些音频,可以获得许多有价值的信息,因为您的耳朵对它应该是什么样的声音有着深刻的理解···
  • 电动压缩机设计-SiC模块篇 电动压缩机是电动汽车热管理的核心部件,除了可以提高车厢内的环境舒适度(制冷,制热)以外,对电驱动系统的温度控制发挥着重要作用,对电池的使用寿命、充电速度和续航里程都至关重要···
  • 评估空间音频 - 第1部分 - 评估标准与挑战 “空间音频”是一个广泛的术语,描述一系列音频播放技术,它的主要目标是让我们在听声音时,能像在现实生活中一样体验三维音效···
  • 如何控制你的脉冲——第二部分 在本DI的第一部分中,我们了解了如何门控振荡器以生成表现良好的脉冲。现在,我们将了解如何将这个想法扩展到生成表现良好的阶跃函数或非常平滑的方波···
  • 如何控制你的脉冲——第一部分 在现实世界中,最好的测试脉冲来自任意波形发生器。而有一种较老的技术是对窄矩形脉冲进行滤波,但如果改变脉冲宽度,滤波器的特性也需要改变以保持脉冲形状。本文详述的方法通过生成升余弦脉冲(不要与升余弦滤波器混淆)来避免该问题,这些脉冲足够接近理想值,因此非常有趣···
  • 安森美用什么驱动可持续的未来:电源、智能感知,还是碳化 近日,全球领先的半导体方案供应商安森美参加了深圳国际电力元件、可再生能源管理展览会(PCIM Asia 2024),并在展会期间举行了媒体交流会,主题为“创新,为了更美好的未来”。会议聚焦安森美在电源管理、智能感知和可持续发展领域的最新技术、解决方案和战略布局,并深入探讨了产品技术细节···
  • QSPICE:行为电阻器(第11部分) QSPICE凭借其可建模的电压和电流源以及行为电阻,在电路建模方面提供了强大的灵活性。
  • 揭密激光测距仪内部结构 基于激光的测距仪最初仅限于精装版工具套装中,如今已普及于一般工具箱装备中。本期拆解的这款3合1测距仪中还包括了激光测量、卷尺以及圆附件…
  • SiC MOSFET栅极应力测试,一文带你了解 了解SiC MOSFET等半导体器件的失效模式是创建筛选、鉴定和可靠性测试的关键。
  • 以5G播送电视:聪明还是愚蠢? 5G TV是一个绝妙的想法,还是纯粹的机会主义?它是否能善加利用有限的频谱资源?
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了