随着混合动力汽车 (HEV) 和电动汽车 (EV) 的数量在全球范围内持续增长,汽车研发人员也在不断创新以保持优势。混合动力汽车/电动汽车动力总成系统差异化历来就是重点关注领域,而现如今,混合动力汽车/电动汽车热管理或加热、通风和空调 (HVAC) 系统差异化对于市场佼佼者而言亦是不容忽视的领域。热管理系统消耗的功率在混合动力汽车/电动汽车中排名第二(仅次于动力总成系统),会直接影响续航里程。
数十年来,内燃机 (ICE) 一直在为汽车及其 HVAC 系统提供动力。在混合动力汽车/电动汽车中,由于尺寸限制或不使用内燃机,需要额外引入两个元件,这些元件在 HVAC 系统中起着关键作用:
请参见图 1。
图 1:混合动力汽车和电动汽车中的加热和冷却系统
在本篇文章中,我们将概述与这些电子 HVAC 应用相关的设计挑战,探讨如何从实时控制性能、可扩展性和成本三方面着手应对这些挑战。
高启动扭矩、高效率、低可闻噪声和低电磁干扰 (EMI) 是优秀电动压缩机系统的主要特征。
让我们了解一下影响 HVAC 性能的重要因素,以及这些因素为何重要:
图 2 中的框图显示了 TI C2000™ 实时 MCU 的架构和外设如何通过多电机控制启用热泵系统。
图 2:由 C2000 实时 MCU 控制的热泵系统
鉴于全球汽车原始设备制造商存在的不断发展的趋势和不同的需求,当下迫切需要利用兼容平台来扩大不同应用需求的能力。基于平台的汽车 HVAC 压缩机、PTC 加热器和热泵设计方法有助于显著缩短开发时间并降低开发成本。特别是对于 MCU,封装类型、引脚数、闪存、温度、功能安全性(汽车安全完整性等级 B)、网络安全、通信接口和成本方面的广泛选择对于帮助汽车 HVAC 设计人员开发可扩展平台至关重要。
系统物料清单、开发资源和上市时间对于汽车 HVAC 开发商来讲都是重要成本。具有成本效益的元件(包括 MCU)、利用可扩展平台的能力和参考设计可帮助解决这些问题。
TI 高压电动汽车/混合动力汽车电动压缩机电机控制参考设计是一种高压 5kW 参考设计,专为由 C2000 TMS320F2800157-Q1 实时 MCU 控制的电动汽车/混合动力汽车电动压缩机应用而构建。该参考设计展示了针对性能、可扩展性和成本三方面的一些混合动力汽车/电动汽车电动压缩机设计挑战的解决方案。
在此处查看此参考设计的实际应用:电动汽车 HVAC 电动压缩机电机控制
混合动力汽车和电动汽车未来几十年将越来越普及,HVAC 控制的电子解决方案亦是如此。这些汽车中的汽车 HVAC 子系统所需的元件会带来设计挑战,例如可靠的实时控制、可扩展性和成本。在 C2000 实时 MCU 和参考解决方案的帮助下,您可以从 ICE 顺利过渡到混合动力汽车和电动汽车 HVAC 系统。
德州仪器(TI)(纳斯达克股票代码:TXN)是一家全球性的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片,用于工业、汽车、个人电子产品、通信设备和企业系统等市场。我们致力于通过半导体技术让电子产品更经济实用,创造一个更美好的世界。如今,每一代创新都建立在上一代创新的基础之上,使我们的技术变得更小巧、更快速、更可靠、更实惠,从而实现半导体在电子产品领域的广泛应用,这就是工程的进步。这正是我们数十年来乃至现在一直在做的事。欲了解更多信息,请访问公司网站www.ti.com.cn。
所有注册商标和其它商标均归其各自所有者专属。