广告

神威超级计算机新的大涡流模拟代码入围2023年戈登贝尔奖

2023-08-11 13:36:44 综合报道 阅读:
计算机械协会(ACM)戈登·贝尔奖(GBP)奖委员会选出了六位入围者,入围者的工作涉及各种应用,包括材料科学、流体动力学、核模拟、地震处理和生物分子模拟。硬件平台也包括世界一流的系统:Frontier(ORNL,美国)、新神威系统(Sunway System,中国无锡)……

计算机械协会(ACM)戈登·贝尔奖(GBP)奖委员会选出了六位入围者,入围者的工作涉及各种应用,包括材料科学、流体动力学、核模拟、地震处理和生物分子模拟。PEfednc

PEfednc

硬件平台也包括世界一流的系统:Frontier(ORNL,美国)、新神威系统(Sunway System,中国无锡)、LUMI(EuroHPC/CSC,芬兰)、Leonardo(EuroHPC/Cineca,意大利)、Cerebras CS-2(KAUST,沙特阿拉伯)和Perlmutter(NERSC,美国)。PEfednc

据了解,无锡国家超级计算中心建造的新型神威超级计算机在 49,230 个节点上采用了约 1920 万个核心 。新的超级计算机似乎基于已知的 390 核神威处理器,该处理器源自神威SW26010  CPU,自 2021 年以来就已推出。因此,新系统增加了处理器数量,但没有增加其架构效率,因此它的功耗可能是巨大的。与此同时,机器的实际性能尚不清楚,因为即使在超级计算机世界中,横向扩展也有其局限性。PEfednc

无锡国家超级计算中心尚未透露其新超级计算机的性能数据,目前很难对其性能做出任何估计。但值得一提的是,它的前身(2021 年推出的神威Oceanlite)预计可提供约 1 ExaFLOPS 的计算性能。PEfednc

与此同时,工程师们透露他们将其应用于NASA的重大挑战问题,使用先进的非结构化求解器来解决具有16.9亿个网格组件和8650亿个自由度(变量)的高压涡轮序列。PEfednc

考虑到模拟的复杂性,这台机器可能确实非常强大。同时,也没有透露仿真是采用 FP64 精度进行的,还是为了性能而牺牲精度的。PEfednc

据介绍,GBP 授予在世界领先的超级计算机上使用最先进的软件和硬件技术进行的最有价值的科学计算。GBP 代表了评估的各个方面,如目标问题的重要性、性能优化、目标系统性能的最大利用率以及为广泛传播的平台提供的知识。PEfednc

2023 年戈登贝尔奖入围名单一览

决赛入围者 1PEfednc

量子精度的大规模材料建模: 金属合金中的准晶体和相互作用扩展缺陷的 Ab Initio 模拟PEfednc

Sambit Das、Bikash Kanungo、Vishal Subramanian 等人(共八位作者),组成的团队成员包括密歇根大学、印度科学研究所和橡树岭国家实验室PEfednc

在这项工作中,团队开发了一种混合方法,利用机器学习技术将密度函数理论(DFT)和量子多体(QMB)问题结合起来。这项工作实现了高精度计算,并通过将 QMB 方法与 DFT 相结合的逆-DFT 实现了大规模建模。他们实现了地面阶段的能量计算,同时保持了与 QMB 相称的精度,使用了橡树岭领导计算设施内 Frontier 超级计算机 60% 以上的资源。PEfednc

决赛入围者 2PEfednc

迈向涡轮机械流动的百亿亿级计算PEfednc

Weiqi Shen, Jiahuan Cui, Yao Zheng等(共 19 位作者),来自浙江大学、清华大学、国家超级计算无锡中心、剑桥大学、佛罗里达大学团队PEfednc

该团队开发了一种新的大涡流模拟代码,用于解决涡轮机械中的可压缩流。他们将该代码应用于美国国家航空航天局(NASA)的重大挑战问题,使用高阶非结构化求解器求解高压涡轮级联的 16.9 亿个网格元素和 8650 亿个自由度。该代码是在无锡的新神威超级计算机上计算的,该超级计算机每个节点拥有多达1920万个内核,其中每个计算节点由384个计算内核和6个控制内核组成。PEfednc

决赛入围者 3PEfednc

用于先进设计的百亿亿次级多物理场核反应堆模拟PEfednc

Elia Merzaria、Steven Hamilton、Thomas Evans 等人(共 12 位作者)由来自宾夕法尼亚州立大学、橡树岭国家实验室、阿贡国家实验室和伊利诺伊大学厄巴纳香槟分校的团队组成PEfednc

该团队模拟了一个先进的核反应堆系统,将辐射传输与热和流体模拟耦合在一起,包括高保真、高分辨率蒙特卡罗代码 Shift 和计算流体动力学代码 NekRS。Nek5000/RS在ORNL的Frontier系统上实现,实现了10亿个谱元和3500亿个自由度,而Shift则在8192个系统节点上实现了非常高的弱缩放。结果,他们计算了 214,896 个燃料棒区域中的 6 个反应,统计误差低于 1%,为蒙特卡罗运输应用提供了首个解决方案。PEfednc

决赛入围者 4PEfednc

通过前所未有的谱元模拟探索湍流瑞利-贝纳德对流的最终状态PEfednc

Niclas Jansson、Martin Karp、Adalberto Perez 等人(总共 12 位作者),其中包括来自 KTH 皇家理工学院、弗里德里希·亚历山大大学、马克斯·普朗克计算和数据设施以及伊尔梅瑙工业大学的团队PEfednc

该团队开发了高保真光谱元素代码 Neko,这对于对完全发展的湍流进行前所未有的大规模直接数值模拟至关重要,同时保持 GPU 加速平台上的高性能可移植性。他们应用了 GPU 优化的预处理器,其任务重叠用于压力泊松方程和原位数据压缩。他们还通过复杂的工作流程控制,在配备多达 16,384 个 GPU 的 LUMI 和 Leonardo 超级计算机上进行了大规模瑞利-贝纳德对流的初始运行。PEfednc

决赛入围者 5PEfednc

在 Cerebras CS-2 系统上使用代数压缩扩展多维地震处理的“记忆墙”PEfednc

Hatem Ltaief、Yuxi Hong、Leighton Wilson 等人(总共六位作者)是阿卜杜拉国王科技大学和 Cerebras Systems Inc. 团队的成员。PEfednc

这项工作利用人工智能 (AI) 定制的 Cerebras CS-2(注:目前为止这是世界上最大的芯片) 系统的高内存带宽进行地震处理,通过利用低秩矩阵近似来拟合 SRAM(静态随机存取存储器)晶圆级硬件上的问题,以及使用许多依赖于多维卷积算子的基于波动方程的算法。因此,该团队将标准地震基准数据集实施到 Cerebras 处理元件的小型本地存储器中,将最坏情况下的负载平衡整个应用程序执行推断到 35,784,000 个处理元件上的 48 个 CS-2 系统。这是在人工智能定制架构上运行的应用程序的一个重要示例,可以支持新一代地震算法。PEfednc

决赛入围者 6PEfednc

将深度等变模型的领先精度扩展到真实尺寸的生物分子模拟PEfednc

哈佛大学约翰·A·保尔森工程与应用科学学院团队成员 Albert Musaelian、Anders Johansson、Simon Batzner 和 Boris KozinskyPEfednc

该小组开发了 Allegro 架构,以弥合原子模拟的精度与速度之间的权衡,并能够以量子保真度描述前所未有的复杂结构中的动力学。这是通过创新模型架构、大规模并行化和针对高效 GPU 使用而优化的模型实现相结合来实现的。Allegro 的可扩展性通过在国家能源研究科学计算中心的 Perlmutter 系统上对蛋白质动力学进行长达纳秒的稳定模拟以及完整、全原子、明确溶剂化的 HIV 衣壳的多达 4400 万个原子结构来说明。他们实现了高达 1 亿个原子的强大扩展。PEfednc

责编:Demi
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 打造下一代家用机器人:精心构建智能化、集成化和电源优 ​​​​​​​今天的家用机器人不仅仅是工具,它们已经成为人们的生活伙伴,为日常生活增添了便利性和互动性。设计这些结构紧凑、功能强大的机器需要克服连接性、电源和外形尺寸等方面的严峻挑战,每一次突破都使我们更接近全面集成的智能家居体验···
  • 用LM337改造,让PWM DAC获得1.5 A输出能力 DAC是一种低功耗设备,其功率和电流输出能力仅限于毫瓦和毫安范围。当然,从根本上讲,它们没有理由不与合适的功率输出级配合使用,这确实也是常见的实际做法。不过,为了好玩,这个设计实例采用了不同的供电方式···
  • 意法半导体:让可持续世界从概念变为现实 最近,意法半导体人力资源和企业社会责任总裁Rajita D’Souza分享了意法半导体的可持续发展战略和近期工作重点···
  • 如何制作双变频的航空波段接收机? 随着互联网的发展,中波和短波频段的接收机已成为过去式,更不用说长波了。不过也许在无线电领域中最有趣的活动之一就是收听服务发射机,对于我这个与航空相关的人来说,主要指的是飞机的发射机和空中交通管制塔···
  • 用4200A和矩阵开关搭建自动智能的可靠性评估平台 在现代ULSI电路中沟道热载流子(CHC)诱导的退化是一个重要的与可靠性相关的问题···
  • 新一代MCU向着边缘AI和实时控制发展 在工业和汽车领域,电机驱动和数字电源转换是典型的实时控制系统,要求处理器具有高实时性和强大的数学计算与处理能力。这些应用需要优质的ADC和PWM功能,并通过联动机制,形成高效、有机的实时控制系统。
  • 英特尔Ultra处理器,用普通内存也能超频到10000 MT/s+? 目前内存超频的世界记录是12666MT/s,而想要达成这样的频率不光需要降低CPU频率,还需要辅助液氮等特殊的冷却方案,对内存进行降温。但已有主板可以在没有特殊冷却方案的情况下,超频到10000 MT/s以上···
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了