微机电系统(MEMS)自从几十年前推出用于取代安全气囊触发器的管中球式(ball-in-tube)设计以来,已经真正彻底改变了传感换能器。如今,我们看到基于MEMS的装置已经广泛地应用在麦克风、声源、动作和压力传感器、天线调解器等等。
在传感领域中,加速度计或许可说是最得益于MEMS技术的元件了。加速度计已经从因应安全气囊所需的相对较低准确度转变为性能更高好几十倍的装置了。当搭配迷人的MEMS陀螺仪共同使用时,这些加速度计对于无人机、无人航空载具(UAV)、自动驾驶车、导弹等惯性测量单元(IMU)更具关键性。MEMS驱动的加速度计革命——我通常不太愿意使用“革命”一词,但在此情况下还算适用——为我们带来的装置有着极高准确度、小尺寸、超低功耗和极低成本的惊人组合。
还有另一项技术正在取得重大进展,而且也是利用类似MEMS的制造和处理——使用硅晶和光学友善的基板来固定、雕刻或制造雷射、传感器、光栅、干涉仪和光谱仪之光电子学。由于处理上的限制,这些光子元件中有许多主要是电子含量较少的光学元件,但这种情况也在发生变化。研究人员现在正成功地将MEMS技术与光子相结合,打造出以前不可能实现的装置,而且他们也在使用这一配对途径以实现多个参数的出色性能。
例如,美国国家标准技术研究所(NIST)的一支团队已经打造了一款基于MEMS的加速度计。该加速度计的核心是两个相互面对的镜像晶片,从而创建了一个光谐振腔。可自由移动的检测质量支撑其中一个镜面,而另一个镜面则是固定参考面。
然后,他们使用与谐振腔谐振波长锁定的固定频率雷射,以谐振腔的谐振波长将红外光注入该谐振腔中。如果检测质量因加速度而移动,腔体共谐振的波长也会发生变化。最后,研究人员使用光梳——另一种惊人的光子结构——作为可调谐滤波器以评估腔体谐振的变化。
尽管似乎有很多技术致力于解决MEMS和其他加速度计似乎业已解决的问题,但仍存在显著的好处。首先,无需校准即可实现全部的性能。其次,其性能令人震惊:研究人员表示,该元件可以传感检测质量小于氢原子直径十万分之一的位移——毕竟,他们在此处使用的是光波长——从而在1kHz至20kHz的频宽内加速小至320亿分之一克(g)。
NIST团队在此专案上发表了两篇相关论文:“以光机械加速度计进行宽频热机械有限传感”( Broadband thermomechanically limited sensing with an optomechanical accelerometer )涵盖了加速度计的设计、制造以及广泛的测试和性能结果;而“用于腔体光机械快速询问的电光频率梳”( Electro-optic frequency combs for rapid interrogation in cavity optomechanics )则针对光梳进行探讨。此外,还有一段2分钟的视讯介绍“以光测量加速度”(Measuring Acceleration with Light)。
除了基础发射器(例如LED和激光二极管)和光探测器之外,您是否有过使用光子元件的经验?光子和MEMS元件呢?您是否认为MEMS和光子的这种融合可能会是“下一件大事”?
(原文发表于ASPENCORE旗下EDN姐妹媒体planetanalog,参考链接:Is MEMS plus photonics the next big thing in sensors?,编译:Susan Hong)
责编:Demi