“工程学”(Engineering)所面临的众多挑战之一在于:由于它算是一种职业也是一门学科,因此只要事情做的好并促成了技术进展,很快地就会有人对你期待更多。我并不是在讨论那些可预见的情况,例如以低成本为 PC 添加更多内存,就能在该PC上执行更强大的应用,接着就会需要加载更多内存,以便能更有效地处理这些应用。
我的意思是增加新功能经常引发另一种非预期的功能增强之需求。我认为这有点像是“好心没好报”(no good deed goes unpunished)碰上了“始料未及的后果定律”(the law of unintended consequences)。
例如,过去几十年来,汽车设计师一直致力于使车子的内外更安静。他们利用更好的流线型设计以及气流、隔音、特殊分层材料等,并为整个动力传动系统进行各种设计改善,终于将噪音的dB级降低到即使是在汽油动力车辆中也很难知道引擎是否在实际运作的程度了。从内燃机(ICE)过渡到全电动和混合动力车(EV/HEV),可说是迎来了大幅降低车辆噪音的最终“胜利”。
但这就是问题所在。在低速时,任何车辆所产生固有的风声和道路噪音都变得非常低,EV/HEV的动力系统甚至已经低到几乎听不见了。其结果是行人——无论是视力障碍者还是注意力不集中的人——以及骑自行车/机车的骑士可能不知道有车辆正朝他们行驶而来。
为此,美国、欧洲和其他地区的监管机构规定了当车辆以低于30公里/小时或18.6 英哩/小时的速度行驶时必须从车辆中发出的最低噪音声量。从某些方面来说,这对于工程师所传达的讯息就是:“很抱歉,您在让车辆安静的设计上做得‘太好了’!”
这个功能甚至还有一个活泼的名称以及一个易于口说的缩写词:“声学车辆警报系统”(acoustic vehicle alerting system;AVAS),而且还可以和广为人知的先进驾驶辅助系统(ADAS)配对,念起来更琅琅上口。据估计,实施 AVAS 将使车子的成本增加100到150美元,不过这个数字应该包含很多“可能”成份。
当然,每一次这样的挑战也为其他一些人带来了机会。有多种方法能符合AVAS的要求,首先是车载信息娱乐子系统及其音频放大器(图1)。
图 1:车辆的音频系统是为AVAS增强功能的基础。(数据源:STMicroelectronics)
但这正是事情变得棘手之处。尽管音频子系统还不错,但却未符合安全性,而AVAS则是安全的。现在,除了标准的AEC-Q100可靠性评级之外,AVAS子系统的所有元素都需要符合更严格的车辆安全完整性等级(ASIL)评级。
ASIL是ISO 26262定义的风险分类方案,主要透过查看车辆运行场景的严重性、暴露度和可控制程度,分析潜在危险的风险而建立。该标准确定了四种ASIL:ASIL A (最不严格)、ASIL B、ASIL C 和 ASIL D (最严格),如图 2 所示。 AVAS被归类在ASIL B功能。
图 2:与ASIL相关的风险分类机制有四个等级,每个子系统均分配一个严重性评级。(数据源:Synopsys)
供货商在此看到了商机,并推出符合AEC-Q100和ASIL B标准的组件,例如意法半导体(STMicroelectronics;ST)的HFDA801A,这是一款数字输入D类(Class-D)汽车音频放大器,具有一系列的先进诊断功能,但光是看这张方块图几乎无法掌握到什么特性(图3)。
图3:针对AVAS应用打造的HFDA801A Class D音讯放大器,除了符合AEC-Q100可靠性等级,还必须达到ASIL-B标准评级。(数据源:STMicroelectronics)
在您参与过的项目中,是否曾经因为“设计得太好”以至于被要求做得更多?或者由于“做得太好”产生不可预期的后果而反咬你一口?那些附加的任务更有意义?可有可无?还是根本就没什么意义?
(原文发表于ASPENCORE旗下EDN姐妹媒体Planet Analog,参考链接:AVAS and the dilemma of ‘too good to be true’ designs,by Bill Schweber;编译:Susan Hong)
责编:Demi