广告

新开发高温超导磁铁为核融合发电铺路

2021-12-01 12:34:22 Maurizio Di Paolo Emilio 阅读:
磁铁设计是创造核融合所需条件中最重要的挑战之一。MIT与CFS的研究人员指出,要打造并局限电浆以产生比所消耗更多的能源,利用该团队所开发的磁铁技术就可能实现。

美国新创公司Commonwealth Fusion Systems (CFS)和麻省理工学院(MIT)的电浆科学与融合中心(Plasma Science and Fusion Center)宣布,他们已成功测试一个高温超导磁铁。MIT研究人员和CFS指出,测试出的20-tesla磁场强度,是目前地球上所能产出的最强的磁场,这也为首座核融合发电厂的建设开辟了一条道路。Jniednc

磁铁设计是创造核融合所需条件中最重要的挑战之一。MIT与CFS的研究人员指出,要打造并局限电浆以产生比所消耗更多的能源,利用该团队所开发的磁铁技术就可能实现。Jniednc

“MIT和CFS独特的伙伴和合作关系,让我们能够敏捷且快速地设计、制造并测试这种磁铁;”MIT电浆科学与融合中心主任Dennis Whyte在一场记者会上表示:「我们能够利用每个组织的优点建立一个团队,在因为气候危机带来的时间压力下提供这项技术。”Jniednc

不可否认,核融合技术的门坎非常高。如果MIT的技术能获得证实,可望成为一种零排碳、无限的能源,也会是MIT一个名为“SPARC”的高磁场核融合能源实验项目很重要的里程碑。SPARC尝试实现至少2的融合增益(fusion gain)──又称为Q-因子(Q-factor),这意味着产生的核融合能量是用以维持融合反应所需能量的两倍。一套示范性装置预计于2025年完成。Jniednc

Jniednc

MIT的高温超导磁铁研发项目。(图片来源:MIT)Jniednc

MIT Research副总裁Maria Zuper表示:“我们的目标基本上是建造一座像是小型高中体育场大小的发电厂,能产出和燃煤发电厂一样的发电量而且零碳排。将使用的燃料是氢,来自于水,因此我们将有取之不尽的供应来源。”Jniednc

磁场

核融合是太阳产生能量的过程。在一个核融合反应当中,两个轻核(light nuclei)合并成单一个较重的核子就会释出能量,这是因为所形成的单一核子总质量小于两个原始核子的质量,而剩余的质量就会变成能量。Jniednc

一个磁场可以将质子与电子或电浆的结合限制住,就像一个看不见的“斗篷”;该磁场对带电粒子有显著的控制作用。一种被称之为“托克玛克”(tokamak)的甜甜圈形状结构,是最常见的核融合反应炉磁局限设计。Jniednc

目前有超过150座托克玛克反应炉装置被打造出来且在运作中,每一套装置都是透过接近核融合点(fusion point)来展示其功能性,不过大多数装置都是利用铜电磁铁(copper electromagnets)来产生磁场,法国的国际热核融合实验反应炉(ITER)设计则是利用所谓的低温超导体技术。Jniednc

研究人员表示,MIT与CEF的核融合成果有一个关键的优势,就是透过使用高温超导体能产生相当强的磁场,并能让托克玛克装置的尺寸更小。该成果是透过利用一种新的超导材料来实现的,即一种在开氏温度20度(20 degrees Kelvin)下运作的稀土钡铜氧化物(rare-earth barium copper oxide,ReBCO)。Jniednc

带状(ribbon-shaped)的ReBCO在几年前才实现商业化应用,这种新高温超导磁铁的应用,得益于过去几十年以托克玛克实验取得的结果。Jniednc

磁铁设计

新磁铁的研发以及供应链、制程的发展需要花费三年的时间。研究人员指出,有大量的产品原型透过实体模型和CAD设计产出。Jniednc

该种新磁铁会经过一连串的步骤逐渐地充电,直到维持在20 tesla的磁场。研究人员表示,这是目前“透过高温超导融合磁铁所能达到的最大磁场强度,”为了创造一个强大的磁场,这种材料必须容纳于一个强大的金属结构中。Jniednc

新磁铁的规模和性能类似于MIT在2016年所完成的Alcator C-Mod核融合反应炉实验,该实验使用非超导体电磁铁。“两者在能源消耗上的差异相当显著;”Whyte表示:“因为Alcator C-Mod实验是用一个普通的铜导电磁铁,大约消耗200百万瓦(million watts )的能源,已产生局限的磁场。”Jniednc

Jniednc

研究人员正准备高磁场超导装置。 (图片来源:MIT)Jniednc

而新磁铁的能源消耗仅约30瓦,Whyte说,这代表着局限磁场所需的能源总量已经少了100万倍。这样的转换意味着一个高磁场超导装置可望产生“净能量(net energy),因为我们不需要利用很多能源去产生局限磁场。”Jniednc

MIT核融合中心的测试也显示,依照一定比例建造的磁铁可望维持超过20 tesla的磁场,该SPARC托克玛克装置所需的性能指针,也将用以证实来自核融合的净能量。Jniednc

其测试是关于在有限的能源消耗下,让一个超导磁铁能达到足够的温度以创造磁场。该磁场的强度范围需要几天的时间爬升,直到足以维持到设计人员认可的一个稳定状态;此状态是透过能量消耗和温度之间的平衡来达成的。Jniednc

研究人员的下一步是以成功的磁铁测试为基础来建构SPARC核融合装置;尽管仍有艰巨的显技术和经济挑战有待克服,但研究人员相信,实现核融合能源的道路终将一片平坦。Jniednc

(原文发表于AspenCcre旗下EDN姐妹媒体EETimes,参考链接:MIT Magnet Enables Path to Commercial Fusion Power,责编:Judith Cheng)Jniednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Maurizio Di Paolo Emilio
Maurizio Di Paolo Emilio拥有物理学博士头衔,也是一名电信工程师和记者。 他曾参与引力波研究领域的各种国际项目,曾与研究机构合作设计空间应用数据采集和控制系统。 他的几本著作曾在斯普林格出版社出版过,并撰写过许多关于电子设计的科学和技术出版物。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
  • 打造下一代家用机器人:精心构建智能化、集成化和电源优 ​​​​​​​今天的家用机器人不仅仅是工具,它们已经成为人们的生活伙伴,为日常生活增添了便利性和互动性。设计这些结构紧凑、功能强大的机器需要克服连接性、电源和外形尺寸等方面的严峻挑战,每一次突破都使我们更接近全面集成的智能家居体验···
  • 用LM337改造,让PWM DAC获得1.5 A输出能力 DAC是一种低功耗设备,其功率和电流输出能力仅限于毫瓦和毫安范围。当然,从根本上讲,它们没有理由不与合适的功率输出级配合使用,这确实也是常见的实际做法。不过,为了好玩,这个设计实例采用了不同的供电方式···
  • 意法半导体:让可持续世界从概念变为现实 最近,意法半导体人力资源和企业社会责任总裁Rajita D’Souza分享了意法半导体的可持续发展战略和近期工作重点···
  • 如何制作双变频的航空波段接收机? 随着互联网的发展,中波和短波频段的接收机已成为过去式,更不用说长波了。不过也许在无线电领域中最有趣的活动之一就是收听服务发射机,对于我这个与航空相关的人来说,主要指的是飞机的发射机和空中交通管制塔···
  • 用4200A和矩阵开关搭建自动智能的可靠性评估平台 在现代ULSI电路中沟道热载流子(CHC)诱导的退化是一个重要的与可靠性相关的问题···
  • 新一代MCU向着边缘AI和实时控制发展 在工业和汽车领域,电机驱动和数字电源转换是典型的实时控制系统,要求处理器具有高实时性和强大的数学计算与处理能力。这些应用需要优质的ADC和PWM功能,并通过联动机制,形成高效、有机的实时控制系统。
  • 英特尔Ultra处理器,用普通内存也能超频到10000 MT/s+? 目前内存超频的世界记录是12666MT/s,而想要达成这样的频率不光需要降低CPU频率,还需要辅助液氮等特殊的冷却方案,对内存进行降温。但已有主板可以在没有特殊冷却方案的情况下,超频到10000 MT/s以上···
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了