广告

中国工程科学发表无人驾驶安全风险的识别与度量研究

2021-11-15 阅读:
本文优先出版在中国工程院院刊《中国工程科学》作者:窦文悦,胡平,魏平,郑南宁来源:无人驾驶安全风险的识别与度量研究[J].中国工程科学,2021.编者按无人驾驶汽车是人工智能技术的应用热点之一。随着汽

本文优先出版在中国工程院院刊《中国工程科学》jOHednc

作者:窦文悦,胡平,魏平,郑南宁jOHednc

来源:无人驾驶安全风险的识别与度量研究[J].中国工程科学,2021.jOHednc

编者按jOHednc

无人驾驶汽车是人工智能技术的应用热点之一。随着汽车智能化、电子化的快速推进,无人驾驶逐渐成为未来汽车发展的重要趋势。无人驾驶的安全性作为推动特定场景大规模应用、开展产业化的基本前提,一直是工业界、学术界乃至全社会高度关注的问题。jOHednc

近期,中国工程院院刊《中国工程科学》优先出版了中国工程院郑南宁院士科研团队的《无人驾驶安全风险的识别与度量研究》。文章开展了无人驾驶安全风险的关键要素定义与识别,并进行了定量测量,率先提出了无人驾驶安全风险六要素框架:单车安全、联网安全、技术水平、法律政策、社会舆论、产业风险。文章指出,为了有效应对未来无人驾驶的安全风险,企业应加强关键零部件的研发和制造,增强信息安全的建设和投入,参与行业标准和法律法规的制定,不做虚假宣传并积极维护新兴行业发展;政府应合理加强测试监管,加速颁布法规与制定标准,引导人才培养并防止人才流失;消费者应保持良好的驾驶与行车习惯,不盲从、不轻信夸张宣传。jOHednc

一、前言jOHednc

随着汽车智能化、电子化的快速推进,无人驾驶已经是未来汽车发展的重要趋势。发达国家应对汽车行业智能化变革,依托深厚的汽车工业底蕴,针对无人驾驶技术应用积极开展引导和规范。美国企业的无人驾驶技术研究保持领先,而管理/ 立法机构适时出台相关政策法规,如《联邦自动驾驶汽车政策》(2016 年)、《自动驾驶法案》(2017 年)。德国着重建立并完善与智能汽车相关的权利、责任归属方法与体系,推出了关于自动驾驶的《道路交通法》第八修正案(2017 年)。在我国,无人驾驶汽车正在从初始技术研发阶段转向与特定应用场景结合的大规模实验和试用阶段,与之相关的认识与监管尚处于萌芽阶段;产业管理层面积极跟进,如《智能汽车创新发展战略》(2018 年)对智能汽车产业进行了顶层规划,《车联网(智能网联汽车)产业发展行动计划》(2018 年)重在智能汽车产业体系构建并提出了车联网的中长期规划。jOHednc

值得指出的是,无人驾驶的安全性作为推动特定场景大规模应用、开展产业化的基本前提,一直是工业界、学术界乃至全社会高度关注的问题。近年来,自动驾驶车辆在测试中撞向行人导致伤亡、电动汽车刹车失灵引发交通事故等,都使得社会和公众对无人驾驶的安全性更为担忧。目前,我国智能汽车产业蓬勃发展,企业、科研院所、地方政府等加大/ 支持以无人驾驶为代表的关键技术研发投入,力求推动产业发展取得突破。安全是制定法规必须要考虑的前提,只有在安全方面进行妥善和长远的研究,才能保障智能汽车产业的可持续、高质量发展。从已有文献来看,因无人驾驶技术的产业化有待推进,行业性的统计资料缺乏;国内外学者较多开展了无人驾驶安全风险的定性研究,也有对无人驾驶技术风险、法律与道德风险概念的分别考量,而安全风险的定量研究未见报道。jOHednc

针对于此,本文开展无人驾驶安全风险的关键要素定义与识别,对其进行定量测量;在剖析数据、概括结论的同时,延伸提出企业、政策、消费者等角度的应对策略,以期为我国无人驾驶安全风险研究、智能汽车行业发展提供基础性参考。jOHednc

二、无人驾驶安全风险研究综述jOHednc

自动驾驶汽车指依赖于计算机系统、人工智能(AI)技术、摄像与图像识别、雷达探测、高精度地图、高精度定位系统等的协同合作,利用电子控制单元(ECU)在无司机控制的情况下安全地驾驶车辆;不调整汽车自身的架构,不改动车辆原有的功能,而是在车身上集成自动驾驶所需的智能器件(含软件和硬件);根据国际汽车工程师协会制定的标准,分为L0~L5 共6 个级别。为使研究范围、概念定义更加聚焦精准,本文将“无人驾驶”“自动驾驶”加以区分,即无人驾驶指在完全没有人类司机操作的情况下,由自动驾驶系统自动安全地操作机动车辆(属于L5 及以上级别的自动驾驶)。jOHednc

(一)无人驾驶的工程风险jOHednc

安全的无人驾驶离不开感知、决策、控制3 个系统的“保驾护航”:感知系统用于掌握行驶路面、交通标志、标线、信号灯的实时变化情况,决策系统开展全局/ 局部的路径规划,控制系统进行无人驾驶汽车的油门部件、刹车部件、方向控制盘、行驶速度变化杆的控制。jOHednc

无人驾驶汽车的网络安全也是重要方面,数据加密、网关防毒、入侵检测是常见的3 种保护方法。例如,有学者研究了无人驾驶汽车通信涉及的认证协议、密钥管理协议,旨在提高通信安全性、成本控制、通信延迟控制的水平。jOHednc

与传统汽车类似,无人驾驶的工程技术安全也需结合具体场景进行考虑。针对一些特殊场景(如车辆涉水),有学者提出了安全应对措施设计方案:利用超声波雷达进行探测,判断险情后鸣响蜂鸣器、闪烁指示灯、弹出显示屏提示,同步及时刹停。jOHednc

(二)无人驾驶的社会风险jOHednc

无人驾驶的社会风险包含了法律、伦理、心理、管理四方面。需要提及的是,目前还没有学者对无人驾驶的心理、管理等内容进行探讨,也没有针对无人驾驶进行全面的风险识别与评价研究(这是本文工作围绕无人驾驶安全风险识别与度量来展开的出发点)。在法律风险方面,研究者主要关注侵权责任的主体认定、因果追溯、举证义务等,为完善立法提供理论依据。jOHednc

①无人驾驶汽车在法律层面非“人”,不能成为承担侵权责任的主体。依据事故情形的不同,承担责任的主体有所区别:生产者承担责任的情形,是产品出现缺陷时由生产者承担侵权责任;使用者承担责任的情形,是在人工驾驶模式下发生事故或因为使用人不当养护而使用导致的事故;销售者承担责任的情形,是在不当存放产品、未如实履行告知义务而导致事故时承担责任。jOHednc

②关于事故因果追溯,有研究建议参照民机、高铁使用“黑匣子”技术进行记录,以便事后追溯;但在万物互联时代,仅靠车载“黑匣子”可能面临黑客攻击、信息篡改等问题,可以建立跨区域、专业性的数据分析中心,专门开展无人驾驶信息的保存与分析。jOHednc

③关于举证义务,当前法律普遍遵循“谁主张、谁举证”的原则,然而在自动驾驶领域,出现事故后由外行的消费者承担维权相关的举证责任显失公平;因而有建议提出,只要消费者可以证明事故发生时车辆处于自动驾驶模式即可。jOHednc

在伦理风险方面,研究者对社会上的伦理价值倾向进行了调查,也探讨了涉及伦理时的机器处理与应对策略。有研究对社会的道德取向进行了调查,以道德机器研究最具影响力:设计了在线实验网站,统计被实验者们在面对无人驾驶遇到的伦理道德困境时所选择应对方案的侧重点,由此统计出各国被实验者的选择倾向以及文化、国家的不同导致的选择倾向差异性。有研究通过测试发现,用户认可按照功利性原则设计的无人驾驶汽车并希望他人购买,但自身更愿意乘坐能够保护乘客的无人驾驶汽车。也有实验得出了不同的结论,即参与者的道德倾向更高,更愿意“舍己救人”;特别是考虑到年龄因素后,参与者倾向于为了更多人的安全而采取措施(如控制车辆转向路侧)。jOHednc

三、无人驾驶安全风险的识别jOHednc

采用探索性的案例调查和质性研究方法开展风险识别研究。结合技术安全研究的已有论述、新闻报道中有关安全的内容讨论,初步整理了访谈提纲并在访谈过程中确定,待讨论的无人驾驶风险涉及工程技术、社会人文两个主要方向以及功能安全、信息安全、法律风险、伦理风险等细分方向。jOHednc

(一)案例的收集与选择jOHednc

资料收集包括二手数据调查、深度访谈两种渠道:前者既有公开信息(如公司主页信息、工商注册信息、新闻报道、人物专访、上市公司年报等),也有公司内部资料(如内部刊物、内部宣传册、演示文档等);后者的交流对象来自珠江三角洲(珠三角)、长江三角洲(长三角)地区,包括企业高级管理人员、项目经理、技术人员,政府管理人员等,具有丰富的从业经验,对无人驾驶安全风险有着良好了解和认识。在本课题研究中,具体选择了珠三角地区13 个企业案例,珠三角、长三角地区共9 个政府案例;相关案例文档共22 个、约44 万字,限于篇幅而不再赘述。jOHednc

案例选择的标准如下:①案例研究差别复制原则,企业需要从事不同类别的无人驾驶业务,政府机构处于不同地区且管理业务属性有区别;②数据的可得性,选取的企业、政府机构能够对外开放一手或二手资料,尤其是企业应处于稳定发展状态;③研究的便利性,经当地政府、友好组织介绍后,可与被调研企业建立良好的合作关系,便于调研及回访;④案例资料的内容质量,所选案例能够充分反映无人驾驶的AI 安全风险要素。jOHednc

(二)数据分析与编码jOHednc

采用扎根理论方法,对收集的资料进行编码分析(编码工具为Nvivo 软件),进而识别无人驾驶的安全风险。jOHednc

1. 开放式编码jOHednc

围绕研究主题,概念化提取资料后进行范畴化:概念化编码,包括贴标签预处理、正式概念化;范畴化编码,即经过不断比对以修正概念化编码。因存在语义的重复、交叉,需对概念开展进一步的归纳与整合;为避免信息过早丢失,研究中对企业案例概念、政府案例概念分别进行整合。为此,在前期得到98 个企业案例概念编码、71 个政府案例概念编码的基础上,对编码进行比对和修正,获得了25 个企业案例范畴、13 个政府案例范畴(限于篇幅,仅部分展示于表1)。jOHednc

表1 企业和政府案例范畴化编码列表(部分)jOHednc

2. 主轴编码jOHednc

对开放式编码过程中得到的范畴之间的关联关系进行分析,将范畴之间相互关联的部分归为层次更高的主范畴。对前步骤中的范畴进行进一步的整理、归纳与合并,最终得到了6 个企业案例主范畴、3 个政府案例主范畴,至此完成风险识别阶段的工作。jOHednc

(三)安全风险的要素框架jOHednc

考虑到企业案例框架、政府案例框架的内涵具有较高的重合度,本研究对其进行调整、合并而得单一框架(见表2):第一层为主范畴,包括6 类安全风险要素,其中前3 类为工程风险,后3 类为人文社会风险;第二层为安全风险要素的度量因子;第三层为安全风险要素的度量问卷测量题项数。jOHednc

表2 无人驾驶安全风险的要素框架jOHednc

四、无人驾驶安全风险的度量jOHednc

(一)调查问卷设计jOHednc

对于要素框架中的各个概念,参照其初始来源的文本,编写与之对应且简洁概括的量表问题,如“不同车型之间的差异会对无人驾驶安全产生重要的不利影响”;最终得到企业案例框架、政府案例框架中所有概念的对应问题,以此作为调查的原始题库。随后,研究团队成员开展了两轮意见探讨及修正,得到了由142 个问题构成的初始问卷:第一部分为被调查对象的个人基本信息(包括性别、年龄、所在城市、学历、是否已就业、从事行业、是否在无人驾驶及相关的企业工作过、从业时长),第二部分包括单车安全、联网安全两方面共28 道量表题,第三部分包括法律政策风险、社会态度风险两方面共52 道量表题,第四部分包括技术水平、产业风险两方面共54 道量表题。jOHednc

(二)试调查和问卷修正jOHednc

本次调查通过网络自填问卷的形式进行,借助长沙冉星信息科技有限公司的“问卷星”平台进行发放,持续时间为2020 年7 月25 日至31 日;共收到反馈问卷1310 份,其中有效问卷1195 份(有效率为91.22%)。综合考虑信度、结构效度、区分效度、收敛效度、整体模型适配度评价指标及修正指标,在验证性因子分析模型中,对题项、潜变量进行大范围的删减与修正,如单车安全部分的测量模型经过调整后(见图1)具有较好的拟合效果。jOHednc

图1 单车安全测量模型jOHednc

在信度方面,3 个因子的Cronbach’s α 系数取值分别为0.742、0.782、0.822(均在0.7 以上),说明量表具有较高的可信度。jOHednc

在结构效度方面,采用探索性因子分析对结构效度进行初步检验。KMO 值为0.870,通过Bartlett球形度检验,达到显著水平,适宜进行探索性因子分析。解释的总方差为72.832%,采用主成分分析法提取固定数量因子、方差最大化正交旋转方法分析各测量题项,得到探索性因子分析结果为:7 个题项在因子上的载荷均大于0.7,209 道题的载荷也有0.616,题项较好分布在3 个因子上。jOHednc

在收敛效度方面,“多层安全保障”“行驶道路环境”“传感器安全”3 个因子的平均变异萃取量(AVE)分别为0.495、0.592、0.698,“多层安全保障”极为接近0.5,另外两个均大于0.5 ;相应的组合信度(CR)分别为0.746、0.813、0.822(均大于0.7),表明各个因子均有较好的收敛效度。在区分效度方面,3 个因子的AVE 平方根均大于与其他因子之间的相关系数,表明该部分模型具有较好的区分效度。jOHednc

(三)正式调查和风险度量jOHednc

委托“问卷星”平台提供样本服务,持续时间为2020 年9 月1 日至15 日,共收集了3167 份正式调研问卷,其中有效问卷3153 份(有效率为99.56%)。在各部分模型验证时,均预先进行样本数据的详细清洗。jOHednc

1. 法律政策风险模型验证jOHednc

主要根据各样本中、各因子下的题项组内方差,各组均值的组间方差进行筛选。针对法律政策安全部分“标准空缺”“法律缺位”“政府推动行为”“相关监管领域空白”4 组问题,运算每个样本在每组问题下的回答组内方差并进行求和,按照方差和对所有样本进行排序(组内方差之和越小,排序越高);计算4 组问题的组间方差,在组内方差相同的情况下,组间方差越大则排序越高。按照单车安全部分的题项进行筛选,选择排序靠前的1000 份问卷进行模型验证。jOHednc

统计被调查人群特征发现,各特征人群的占比与试调查样本相比基本没有变化。男性占比47.7%,女性52.3%, 比例更显均衡;年龄在20~30 岁、30~40 岁范围的分别占28.6%、35.1%;学历水平以大专、本科为主,分别占29.1%、36.3%,占比基本均衡,具有一定代表性;已工作者占多数,可认为具有良好社会经验。jOHednc

处于就业、失业、自由职业3 种状态的调查对象共有838 人,没有集中于某一行业的情况;“制造业”“信息传输、软件和信息技术服务业”人数占比稍高(分别为22.91%、15.04%),这些行业与无人驾驶关联相对紧密,因此样本同样可以代表对无人驾驶有一定关联的普通人。曾经在无人驾驶相关企业工作过的调查对象有166 人,在从业时长方面的分布较为均衡,少于1 年的占24.1%,1~3 年的占45.78%,3~5 年的占13.86%,5~10 年的占12.65%,10 年以上的占3.61%;从业1~3 年的占比较高,考虑到具有丰富从业经验的人数本身占比较少,因而对整体产生的影响不明显。jOHednc

对于法律政策风险部分的测量模型,采用详细筛选后的正式样本进行验证(见图2),可见模型整体拟合效果良好。jOHednc

图2 法律政策风险测量模型jOHednc

在信度方面,4 个因子的Cronbach’s α 系数取值分别为0.693、0.837、0.813、0.844,第1 个因子的“标准空缺”接近0.7,另外3 个均大于0.7,说明本次验证中的量表可信度良好。jOHednc

在结构效度方面,KMO 值为0.850, 通过Bartlett 球形度检验,达到显著水平;解释的总方差为72.895%,在获得的探索性因子分析结果中,11 个题项普遍较好(分布在4 个因子上),各个题项在对应因子上的载荷均大于0.7。jOHednc

在收敛效度方面,“标准空缺”“法律缺位”“政府推动行为”“相关领域监管空白”4 个因子的AVE 分别为0.437、0.720、0.695、0.577, 有3 个大于0.5 ;相应的CR 分别为0.698、0.837、0.819、0.845,有3 个大于0.7,表明本次验证的各个因素具有较好的收敛效度。jOHednc

在区分效度方面,4 个因子的AVE 的平方根均大于与其他因子之间的相关系数,表明该部分模型的区分效度较好。jOHednc

2. 其他风险的模型验证结果jOHednc

单车安全、联网安全、社会舆论风险、技术水平风险、产业风险的模型结果如表3~5 所示。jOHednc

在信度方面,5 个安全风险模型的各因子均有较好的信度,除单车安全下的“多层安全保障”之外,其余因子的Cronbach’s α 均大于0.7。jOHednc

在结构效度方面,5 个安全风险模型的结构效度较好,在探索性因子分析中均有较好的结果。在验证性因子分析中,5 个模型拟合的效果整体较好(除了科技水平风险略欠理想);5 个模型的收敛效度均较好,除了单车安全下的“多层安全保障”之外,各因子AVE 均大于0.5,CR 均大于0.7 ;4 个模型的区分效度都较好,所有因子的AVE 平方根均大于与同模型中其他因子之间的相关系数。jOHednc

至此,本研究完成了建模过程验证(基于两轮问卷调查收集到的量表数据),形成了一套可度量、可观测的无人驾驶安全风险要素框架(见表3)。jOHednc

表3 模型的信度与收敛效度jOHednc

表4 模型的结构效度与拟合指标jOHednc

表5 模型的区分效度jOHednc

五、研究结论与应对策略jOHednc

(一)研究结论jOHednc

在风险识别阶段,本文运用扎根理论,从珠三角地区的无人驾驶企业案例,珠三角、长三角地区的政府案例资料出发,提炼识别了有关无人驾驶的安全风险;按照概念化– 范畴化– 主轴化的编码步骤梳理出风险要素的层次,由此形成无人驾驶的安全风险框架。企业案例得到的风险框架有6 类要素(主范畴):单车安全、联网安全、技术水平、法律政策、社会舆论、产业风险;其下包括25 个副范畴、98 个概念,基本上是企业从业者较为关注的问题。政府案例中得到的框架包括3 个主范畴:官方约束、环境不足、产业自身问题,其下包括13 个副范畴、71 个概念;政府人员的关注问题聚焦于管理方面,如政府对行业的推动手段与能力、无人驾驶汽车上路测试监管、无人驾驶关联领域监管等。此阶段研究建立了无人驾驶安全风险的理论雏形,可为后续分析提供理论层面的支持。jOHednc

在风险度量阶段,本文依据风险框架编制调查量表、设计调查问卷,通过试调查的信度和效度分析完成了调查量表修正;针对正式问卷调查结果,通过验证性因子分析方法验证了风险测度。在无人驾驶安全风险中,第一层为单车安全、联网安全、技术水平、法律政策、社会舆论、产业风险6 类要素,第二层涉及18 个风险度量维度,第三层包括48 个风险测度题项。jOHednc

据此,率先从理论、实证两方面入手,建立了具有普适性、可度量的无人驾驶安全风险框架;将风险形成理论,相应适用范围可进一步探索拓宽(由小变大、从典型人到普通人)。jOHednc

(二)无人驾驶安全风险的应对策略jOHednc

1. 企业方面jOHednc

针对单车安全,企业应提高关键零部件质量,将传统汽车的零部件与无人驾驶技术进行适配,共同保障安全驾驶;无人驾驶车辆会遇到复杂或罕见__路况(如车道线不清晰、极端恶劣天气等),应拓宽训练场景范围,尽量适应真实行驶场景。jOHednc

针对联网安全,与车辆智能化的发展趋势相适应,企业需加强信息安全建设,规避可能的黑客攻击以避免重要数据失窃,保持各类信息的安全可靠;无人驾驶汽车的控制与决策权力应分散化,车端必须保留足够权限,以免被远程操控。jOHednc

对于技术水平风险,AI 技术仍然存在不确定、不可解释、依赖数据等情况,对新型、突发问题的解决能力比不过人类,因此无人驾驶不宜过度依赖于此;应将其他技术(如第五代移动通信、车联网、区块链等)与AI 技术配合使用,同时注重无人驾驶关键零部件(如底盘、传感器、芯片、材料等)的技术研发与性能升级。jOHednc

对于法律政策,鉴于颁布都有一定的滞后性,建议企业积极关注并超前研判,适时参与无人驾驶相关法律、标准的研究制定;企业开展无人驾驶技术探索时需严格遵守法律法规,测试车的改装与调试应确保足够的安全性。jOHednc

对于社会舆论,企业应合规开展销售活动,不进行虚假宣传以避免导致消费者误判无人驾驶技术能力,促进业务的可持续;倡导无人驾驶行业的良性竞争,消除恶意的行业舆论抹黑,避免消费者对整个新兴产业存疑,为行业发展创造良好氛围。jOHednc

针对产业风险,企业应清醒识别自身不足,如管理体系完善与否、风险危害认知是否欠缺、应变更新能否及时有效,进而采取针对性改善措施;建设并运用行业独立第三方机构,发挥专业化安全考察与认证的保障作用;投资活动应综合考虑无人驾驶产业的中长期发展,倡导价值投资,规避过度快速商业化可能造成的行业发展短视和无序。jOHednc

2. 政策与监管方面jOHednc

无人驾驶的监管需要多部门协调与配合,建议相关部门加强业务联系和交流,规避信息、能力不对称可能导致的工作低效。管理机构应及时开展无人驾驶行业的顶层设计和综合规划,向社会提供清晰的产业布局导向,如推广重点、推广方式等,逐步消除零散补贴企业等传统方式。jOHednc

合理加强对测试及相关领域的监管。目前一些企业存在没有取得资质就私自改装、违规测试车辆的现象,对此应提高警惕并坚决查处,尽快消除违反交通安全法律法规的改装与测试行为。jOHednc

建议管理部门尽快开展相关法规和标准的顶层研究和布局设计,就无人驾驶的法规和标准开展社会讨论并择机颁布,为企业的商业投资、技术研发活动提供相对明确的指引与约束,有利于无人驾驶行业的快速、有序发展。jOHednc

建议尽快开展无人驾驶车辆事故后的责任归属划分、因果追溯等法律问题探讨,这是企业进行市场探索、技术发展的重要依据之一。例如,现行的道路交通安全法律条文,可以依据无人驾驶技术进步情况而择机调整,更好适应时代的进步(如不再一刀切地禁止驾驶员双手离开方向盘)。jOHednc

建议加快建设无人驾驶人才培养体系。一方面完善高校、科研院所的本土人才培养模式,适应无人驾驶行业快速发展需求;另一方面采取积极措施吸引并留住人才,如引进国外优秀的成熟人才,跨行业吸引专业人才加入等。以核心人才为依托,逐步革新教育培养模式,支持线控底盘、芯片、传感器等关键技术突破与国产化应用。jOHednc

3. 消费者方面jOHednc

在心理层面,消费者倾向于在无人驾驶技术尚处在发展进步阶段就寄予过大的信任,从而在驾驶时可能有所松懈、过度依赖系统。建议消费者保持车辆驾驶员应有的素养和警觉,延续良好的驾驶习惯,注重行车文明;尤其是在遭遇无人驾驶车辆测试时,不应刻意别车、鸣笛以免发生事故。jOHednc

在舆论层面,消费者应当放平心态,不轻信夸张宣传,即使智能车辆在销售阶段可能被夸大功能,也应对产品保持合理的期望,客观看待无人驾驶产品进步中的不足;一些媒体可能会因同行竞争而对无人驾驶企业进行不适当的信息传播,消费者对此应保持理性而不宜在事态未明阶段盲目跟风。jOHednc

对于无人驾驶调查研究,建议普通消费者特别是对无人驾驶行业有所关注、有所思考的“发烧友”“热心人”,积极贡献自己的想法、认识、判断,为行业发展提供公众声音、真知灼见。jOHednc

注:本文内容呈现略有调整,若需可查看原文。jOHednc

作者介绍jOHednc

郑南宁,人工智能、计算机视觉与模式识别专家,中国工程院院士。jOHednc

长期从事人工智能与模式识别、计算机视觉及其先进计算架构的应用基础理论与工程技术的研究,建立的视觉场景理解的立体对应计算模型与视觉注意力统计学习方法成为该领域代表性工作,为构造计算机视觉系统和基于图像信息的智能控制系统,提供了理论指导和关键技术。jOHednc

文章来源及版权属于,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系Demi.xia@aspencore.com
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
广告
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了