首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC Shanghai 2025
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
高阶自动驾驶系统设计开发到软件部署
时间:
2022-05-05
作者:
汽车电子与软件
阅读:
分享
扫码分享到好友
前述文章已经对整个SOA的架构特性、实现基础、应用优势及开发流程进行了相应的详细阐述,从而对于整个SOA的设计流程已经有了大概了解。整个核心思想是采用自上而下的方法进行设计,以改造现有车辆程序和平台上实施的现有功能或系统的EE架构(逆向工程)。
前述文章
已经对整
个SOA的架构特性、实现基础、应用优势及开发流程进行了相应的详细阐述,从而对于整个SOA的设计流程已经有了大概了解。整个核心思想是采用自上而下的方法进行设计,以改造现有车辆程序和平台上实施的现有功能或系统的EE架构(逆向工程)。
当前国内较多的OEM的现有功能开发过程都是比较激进的,以较为迅速的方式开发出来后,无法实现平台化应用,在分布式架构中的很多车型之间就无法进行软件重用,更别说更高级别的集中式架构设计方式了。
这种无具体逻辑功能架构的完整构建方式往往制约了对于软件定义汽车的强烈需求,因此在以面向服务SOA开发的过程中,我们更多的是建议将网络拓扑、网络通信、ECUs平台架构、功能需求和用例场景作为分析作为SOA转换的起点。但是如果特性很复杂,那么仍然有必要使用逻辑功能架构来定义高质量和完整性的SOA。
基于SOA的EE架构设计方法完全遵循一种自顶向下的研究开发方法,从而引入到车辆程序和平台的新特性或系统。这种方法是以给定特性、系统需求、测试用例及逻辑功能架构为输入,在软件平台上由功能所有者Function Owner设计以域控制器级别公共的基础服务类型,同时支持子系统和功能列表。
对于前文所述的业务驱动型SOA开发方法来说,本文将针对性的以一个业务分析的例子进行整体说明。
以开发下一代高阶自动驾驶系统为例,终端用户期望在当前实现的功能基础上,进一步增加功能适用场景,同时提升当前已实现功能的性能指标。
SOA架构系统建模基础原理
SOA 参考架构是对抽象架构元素进行建模,独立于特定的解决方案、技术、协议。该参考架构可以有效解决服务消费者和提供者的交互问题,涉及其中的关键要素(包含行为、信任、交互、控制)的参与、实现和管理。针对SOA所提供的服务过程模型包含描述、可见性、交互、策略等几个大模块。其中服务描述用于进行定义、使用、部署、管理等方式控制服务所需的交互信息,这些信息涉及服务可达性、服务接口、服务功能、服务相关联的策略信息。
服务接口描述应包含行为接口(Action)和信息接口(Process),其中信息的处理需要使用信息交互模式MEP(这种交互模式可理解为一种时序图)。服务可达性是为了使服务参与者能够相互定位和交互,这种可达性需要有服务位置和描述通信方式的协议等信息,并涉及了解服务的端点、协议和存在性。服务功能是针对所提供的服务可能在真实世界中产生的效果的定义,该功能定义需要保证其功能效果满足技术规范定义。
接下来,我们将基于SOA的服务架构构建针对ADAS系统的实例进行详细原理分析。整个基于SOA架构的开发流程可概括如下图:
对于整个SOA的整车开发流程来说,需要从整体商划分为两个层面的开发,其一是SOA的顶层服务开发,该层主要涉及面向服务的开发模式。
功能定义阶段主要是由功能负责人Function Owner从整体功能设计角度上进行把握,其内容涉及如下:
1、定义业务需求
包括对标市场主流车型的场景,接收项目组功能配置清单,从售后的角度对用户需求进行调研,随即生成功能场景库。如果同时考虑自动驾驶系统的数据采集端口,需要考虑场景数据来源,包括自然采集数据、高精地图数据、标准法规文档、数据记录场景及道路交通法规等可以生成不同的场景库(如自然驾驶场景库、重组场景库、法规标准场景库、事故场景库、交通法规场景库等)。如上的场景库又可以通过ADAS功能安全测试生成预期功能安全场景库,通过V2X终端功能测试生成V2X场景库。
假设我们需要实现点对点自动驾驶这一终极自动驾驶目标,则需要首先对该目标进行分解,从而挖掘用户的所有可能使用场景。比如需要进行适时加速、减速、换道、对中等操作。在细化下去,就是包含其感知、规划及决策的系统控制能力拆解了。感知方面则是对车辆附着的多个传感器分别进行能力需求定义Product Capability(PC),规划决策方面则是会根据检测的感知信息进行目标级语义融合,然后生成可用的轨迹信息,并预测该轨迹是否有碰撞风险目标,这整个过程需要在模块Module中不同软件元组件Software Component(SWC)中进行分别定义和实现。决策执行中对如上各个子目标动作的行为拆解,比如加减速则需要对底盘——动力系统进行一体化控制,对中控制则需要对转向系统进行有效控制,换道则除了转向系统EPS外,还需要对车身系统(如转向灯)进行控制。
2、搭建Module服务架构
Module架构实际是实现整个SOA架构从底层硬件层到顶层硬件层的整个功能设计模型,该模块汇总了其下软件组件SWC模块,它们实现了产品功能并创建服务和算法来实现功能。从如下简单的SOA软件封装模型中可知其中包含几个大模块:
如上图所示,Module模块将车辆和使用模式的原子信息提供给车辆中的消费应用程序和系统。所有管理或控制用户功能和传感器/执行器的应用程序都应使用元服务来评估该功能是否应由其自身的功能执行。这样做可以提供更好的安全性、健壮性,以用户和系统有意义的方式实现快速访问。
以ADAS开发距离,整个Module服务模块可以被理解为实现ADAS功能的各个封装模块,比如车身域、底盘域、动力域、娱乐域等可分别拆解为module中其中一层的多个子Module。各个子module又可以定义自己的产品能力PC和软件组件SWC。
3、分解Module产品能力
从场景库分解出相应的测试用例Usecase,各Usecase对应着统一建模语言设计过程,其中包括相应的用例图、活动图、时序图。如上三种图形在功能设计中至少需要有时序图相对应。
如下图a所示用例图需要从用户角度描述系统功能,并指出各功能的操作者。图b所示为针对各个产品能力所对应的时序图,时序图中各子单元是实现某一个用户功能所需要调用的产品能力单元,调用过程遵循从上至下过程。比如,如果某个功能先要进行功能自检,就需要在初始调用单元中画出回环箭头来调用自身的自检函数单元;如果要调用关联系统的实现函数,则需要画出箭头指向关联实现单元,并通过在箭头上赋予相应的调用函数名称来实现对该实现函数模块的调用。
如上整个过程会涉及系统的硬件架构设计,将会后续硬件部署中进行详细介绍。
对于要实现如上述功能所定义的场景,需要设计自动驾驶系统相关的域控制器或传感器进行边界能力设计。这里我们称之为产品能力(Product Capability,PC),这种产品能力主要是针对自动驾驶系统。产品能力的需求设计是由系统设计架构师进行设计的,他需要判定该需求是否能够适配对应的自动驾驶系统功能——>该PC是否准确——>如果没有对应PC,该如何新增——>如果有,该PC实现方式是由哪个模型Module来提供——>如果没有相应的支撑Module,该如何新增该Module(包括考虑在软件模块定义中如何实现功能性模块和非功能性模块)。
如上这一系列问题都是我们需要重点考虑的部分。
4、分解Module软件组件能力
功能软件开发阶段主要是由软件模块负责人Module Owner从整体功能软件开发角度进行规划,其中包含涉及的软件模块与功能负责人设计的功能进行映射,相应的过程涉及软件模块架构设计、软件概要设计、软件详细设计。整个软件设计过程主要是与系统设计阶段的架构、功能、场景均需要进行一一对应。同时,在Module概要设计中主要是进行实现产品软件组件(Software Component)SWC静态接口设计,整个设计过程还要与前述产品能力PC进行相互映射(即每个产品能力PC都需要有一个相应的软件组件SWC来实现)。具体的SWC设计方法和映射原理会在后续文章中进行详细阐述。
5、功能安全与预期功能安全相关的设计过程
如上正向设计过程中,需要同步考虑功能安全进行同步设计。从上至下需要在设计场景库阶段制定功能安全目标Saftygoal。在定义用户案例阶段进行危害分析与风险评估HARA分析,识别项目的功能故障引起的危害,对危害事件进行分类,然后定义与之对应的安全目标,以避免不可接受的风险。在定义活动图和时序图过程中需要同时进行整个功能安全需求FSR设计。
在模型详细设计阶段,需要根据系统功能UML设计阶段的时序设计、接口设计来进行软件阶段更为详细的SWC动态时序设计、详细接口设计。同时,在模型详细设计阶段还可以同步进行功能技术安全需求设计TSR。技术安全要求(TSR)是对功能安全要求(FSR)提炼,细化了功能安全的概念,同时考虑功能性的概念和初步的体系架构。通过分析技术安全需要来验证符合功能安全需求。因此,FSR是item级的功能安全要求,进行系统阶段的开发,需要将FSR细化为system级的TSR,然后可进行完整的系统设计。
总结
本文对整个SOA的架构设计过程做了详细的过程分析,其中包括搜集用户需求,根据用户需求定义使用场景,根据使用场景构建不同的Module实现不同的功能子项,各个功能子项又需要定义自己的产品能力模块、接口模块、软件组件模块几个。最后由SWC调用相应的函数调用I/O模块硬件和底层驱动模块。同时,从正向开发的角度考虑,在自顶向下的设计过程中,需要充分考虑功能安全/预期功能安全相关的Saftygoal、FSR、TSR几大设计流程设计。
责编:Lefeng
文章来源及版权属于汽车电子与软件,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
汽车电子与软件
汽车电子与软件
进入专栏
分享到:
返回列表
上一篇:
如何看待纯电动Smart精灵
下一篇:
E资讯:华为今日发布会折叠机首当其冲,还有众多智能产品
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
拆解报告:酷态科电能块CP133L
酷态科电能块CP133L标称容量10000mAh,采用灰白双色嵌套设计,配备1个USB-C和一个USB-A接口,并自带一根C口自带线
CES|2025年将成为人形机器人从概念到应用的转折点
CES 2025标志着机器人技术从概念走向实际应用的转折点。从陪伴机器人到人形机器人,各类产品在技术细分和应用
大众集团第51周,卖了8.1万
最新一周,51周的数据(12月16日-12月22日),中国乘用车市场中,大众集团以 61,908 辆的周销量继续占据榜首,奥迪以
拆解报告:绿联100W快充编织数据线
下面充电头网就带来绿联这款USB-C数据线的拆解,一起看看内部的做工和用料···
上海2025年新能源牌照政策压哨更新!哪些细节值得关注?
千呼万唤中,上海 “绿牌” 政策压哨更新!就在距新年不到两小时之际,修订版的 2025 年上海绿牌政策重磅出炉··
评测:绿联HiTune S5耳夹开放式真无线耳机
为全面了解该耳机的实际表现,我爱音频网对绿联HiTune S5开放式真无线蓝牙耳机进行了详细的测试与体验,主要为
拆解报告:TURTLE BEACH乌龟海岸Z6A 5.1声道游戏耳机
此次将要拆解的TURTLE BEACH乌龟海岸Z6A头戴式游戏耳机,是一款搭载了8个扬声器,提供物理5.1声道环绕声的产品,
如何考虑芯片的功能安全设计
今天的文章结合笔者的工作经验对芯片功能安全设计的思路简单做一些探讨和总结,不涉及具体安全机制的实现,算是
日系第48、49周:每周6-8万
11月中旬至12月初,日系品牌汽车的销量数据为观察市场动态提供了重要参考···
叩问2024,中国汽车明年走向何方?——技术篇
2024 - 2025年是中国汽车行业的技术竞争是越来越白热化了,当然AI的成分更高,硬件的部分开始进入打磨期!
拆解报告:安克150W四口氮化镓快充充电器
安克150W氮化镓快充充电器设计风格简约,机身外壳采用PC阻燃防火材质,安全可靠。表面哑光工艺处理,触摸手感相当
吉利集团第50周销量,5.8万!
2024年12月9日至12月15日,中国汽车市场持续保持活跃,吉利集团四大主品牌总销量为5.8万台,各品牌销量普遍增长·
美国自动驾驶监管“转向”:Robotaxi迈向普及之路?
随着美国政府白宫领导人的切换,Elon Musk的影响力扩展到了自动驾驶技术监管领域···
广汽集团第49周,1.6万台
最新一周(12月2日-12月8日),昊铂、埃安与传祺三大品牌总销量为15,332辆,环比下降6.1%···
拆解报告:极空间私有云Q2C
极空间私有云Q2C支持使用3.5和2.5英寸硬盘进行数据存储,支持单盘22T容量。私有云采用有线网络连接方式,为固定
日本汽车2024年销量同比下滑严重,为什么?
2024年,日本汽车市场遭遇了7.5%的销量同比下滑,全年新车销量定格在442万辆,低于去年的478万辆,萎缩不仅源于整体
拆解报告:华为speed wifi NEXT W05
华为Speed Wi-Fi NEXT W05随身WiFi在日本发售,机身采用平板设计,在正面设有显示屏,支持触摸操作,使用更加灵活。
长城汽车第50周销量环比增长11.8%
最新一周(2024年12月9日-12月15日),长城汽车旗下多个品牌继续在市场中稳步攀升,累计销量达到20,704辆,环比增长11
拆解报告:MOMA猛玛立声SE无线通话系统耳机
MOMA猛玛立声SE无线通话系统耳机在外观方面,采用了非常轻巧的单边头戴式设计,搭配柔软亲肤的耳罩、头枕和头垫
萤火虫品牌:会给蔚来汽车带来什么?
萤火虫的推出标志着蔚来在品牌矩阵和全球化布局上的重要突破。通过高端小车市场的切入,萤火虫不仅丰富了蔚来
该如何设计PCB以保证恶劣环境下的信号完整性
在现代电子设计中,保持PCB信号完整性是一项越来越具有挑战性的任务···
CES 2025:洞察汽车创新未来
从CES 2025的汽车方案展示可以看到,汽车OEM正从黑盒解决方案转变为区域架构为主的处理骨干,传感器功能也逐渐
拆解一个Geek Bar Pulse电子烟,拆到最后竟然还能亮?
电子烟(又称“vape”)的使用量也在迅速增长,无论是新用户还是现有的香烟、雪茄、烟斗和嚼烟用户都在使用··
CES 2025:Edge AI硬件加速再掀热潮
边缘计算/边缘人工智能(Edge AI)一直是热门话题,在CES 2025也不例外。然而,实现边缘计算/智能的底层硬件是
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
制造/工艺/封装
EDA/IP/IC设计
安全与可靠性
测试与测量
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了