首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
国际汽车电子大会
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC SZ 2024
国际汽车电子大会
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
国际汽车电子大会
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
IIC SZ 2024
国际汽车电子大会
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
UDS网络层介绍
时间:
2022-05-05
作者:
汽车电子与软件
阅读:
分享
扫码分享到好友
汽车故障诊断 UDS(Unified Diagnostic Service)是利用ECU监测控制系统各组成部分的工作情况,发现故障后自动启动故障记录和处理逻辑。
一、UDS概述
汽车故障诊断 UDS(Unified Diagnostic Service)是利用ECU监测控制系统各组成部分的工作情况,发现故障后自动启动故障记录和处理逻辑。汽车故障诊断模块不仅能够存储记忆汽车故障,还能够实时提供汽车各种运行参数。外部诊断设备通过一定的诊断通信规则与ECU建立诊断通信,并读取这些故障和参数,同时解析出来供外部测试人员分析。其主要遵循:ISO-15765、ISO-14229诊断协议。经常应用在整车的各种整车上的电控单元(ECU)上面。
二、UDS基本原理
1、UDS协议栈
UDS协议栈主要分为
网络层
和
应用层
两大部分
网络层
:是为了解决ISO 11898 协议中的经典can数据链路层与UDS 应用层 ISO 14229 协议中定义的应用层,彼此的数据长度不一样问题。经典can数据链路层最大支持8字节,但 ISO 14229 不仅仅支持can总线设计的,其最大容量是达到4095字节。如UDS应用需要发送20字节数据信息,而can不能一帧报文处理完,需要3帧才能发送完毕。那么如何将多字节数据通过can进行有效,有序的传输呢?ISO 15765-2 由此而生。网络层分为单帧和多帧,单帧(SF)就是一帧can报文8字节内就可以把uds数据处理完毕。多帧就是一帧can报文8字节内处理不完,需分为首帧(FF),流控帧(FC),连续帧(CF)来处理。网络层还有时间参数,如N_Ar、N_As、N_Br、N_Bs、N_Cr、N_Cs。后续网络层会详细讲解。
应用层
:应用层协议通常作为确认消息的传输,意味着从客户端发送的每一个请求都将有由服务器端产生的与之相对的响应。
2、功能寻址与物理寻址
由客户端诊断设备(诊断仪Tester),发出诊断请求,服务端server响应客户端请求。客户端可以使用
功能寻址
(一条报文对应本网络中所有Server(ECU),一般为报文ID为7DF),也就是说本网络中所有ECU都要对这条指令做出响应,即一对多模式。
客户端也可以使用
物理寻址
(是一种点对点的寻址模式,一条报文对应于单独一个Server(ECU))单独跟网络中某个ECU服务端进行通讯,即一对一模式。
功能寻址和物理寻址是每一个具备UDS诊断功能的ECU,所具有的两个CAN_ID,整车上规定每个ECU功能寻址的CAN_ID相同,一般设置为0x7DF。整车上也规定每个ECU的物理寻址CAN_ID 都是唯一的。
三、网络层概要
网络层功能
应用层诊断服务can数据帧的转发;
多帧数据传输,进行数据的打包、解包,协调上下层工作;
单帧报文传输
多帧报文传输
四、网络层协议
协议数据单元(N_PDU)
N_PDU一般包含3个领域,N_PDU:{ N_AI, N_PCI, N_Data }如图所示
协议控制信息(N_PCI)结构
网络层对于N_PDU分为单帧、第一帧(首帧)、连续帧、流控帧这四种类型,每种类型是通过协议控制信息(N_PCI)进行区分的,每一个N_PDU都只有一个N_PCI。通常对于CAN诊断来说,就可以通过识别每条CAN帧数据域的首个字节来确定它属于四种类型中的哪类。下面对这四种类型进行说明。
单帧(SF)
单帧顾名思义就是一帧can报文就可以处理完uds服务。can报文首字节为N_PCI字节,控制信息如下图所示:
从上图可知,can报文首字节高4bit为0表示首帧,首字节低4bit表示单帧数据长度,即N_Data的有效字节数。通过trace我们可以看到N_Data有效字节数为3,有效字节数不足8字节,可填充任意数,这里填充00。因此如图所示的trace,在接收方接收到该can报文后,解析can报文首字节03便可知该报文为单帧且只有3个有效字节数,后续全为补充的无效字节数。
第一帧(FF)
发送方发送N_Data数据过长时,则需要拆分成多帧报文,被拆分后的报文需要通过多个N_PDU来发送,而接收方接收到多个N_PDU信息后进行重组。发送方发送多帧时,需要先发送首帧来告知接收方有多少字节数要发送到接收方。首帧控制信息如下图所示
从上图可知,can报文首字节高4bit为1表示首帧。首字节低4bit和byte2组合12bit表示发送方发送的数据长度,即N_Data的有效字节数。通过trace我们可以看到N_Data有效字节数为0x018,即24个有效字节数。因此如图所示的trace,在接收方接收到该can报文后,解析can报文前两个字节0x10 0x18便可知该报文为第一帧且有24个有效字节数,后续全为补充的无效字节数。
流控帧(FC)
UDS多帧通讯时:1、发送方发送首帧FF给接收方。2、接收方接收到首帧,解析首帧。3、接受方根据自身条件判断后(如:接收数据缓存大小,接收数据快慢能力,当前是否可以接收数据等),回复一帧流控帧FC给发送方。4、发送方根据接收到接收方的流控帧FC来决定后续的操作。流控帧FC控制信息如下图所示:
从上图可知,can报文首字节byte1高4bit为3时表示该帧为流控帧FC。byte1低4bit为流状态FS(
0表示继续发送、1表示等待、2表示溢出即第一帧中的FF_DL信息的长度超过接受实体缓冲区的大小
),byte2为块大小(允许一次可连续发送连续帧CF的次数),byte3为发送方发送连续帧CF与连续帧CF间的最小间隔时间。
连续帧(CF)
发送方发送首帧FF,然后接收到接收方的流控帧FC后,若条件允许可继续发送信息,则需根据连续帧CF的控制信息格式来发送信息。连续帧CF控制信息如下图所示:
从上图可知,can报文首字节byte1高4bit为2时表示该帧为连续帧CF。byte1低4bit 为连续帧的顺序号SN。对于所有的拆分信息,SN开始于0。第一帧应当分配值为0。虽然第一帧 N_PCI没有明确表示出序列号,但是应该将首帧当作0号序列对待,第一个流控帧FC后的连续帧SN设置为1,同一拆分信息上,每一个新增的连续帧顺序号SN增1,连续帧顺序号SN的值不受流控帧的影响,当连续帧顺序号SN值为0x0F时,下一个连续帧中将顺序号SN重置为0。
如图为多帧举例:
定时参数
网络层定义了N_Ar、N_As、N_Br、N_Bs、N_Cr、N_Cs六个时间参数
对上述图片进行归纳,可以总结出几种超时:
N_As超时:发送方没有及时发送N_PDU。
N_Ar超时:接收方没有及时发送N_PDU。
N_Bs超时:发送方没有接收到流控帧。
N_Cr超时:接收方没有收到连续帧。
N_Br超时:接收方没有发出流控帧。
N_Cs:即STmin,发送两个连续帧需要等待的最短时间,N_Cr最大1000ms。
五、寻址方式
将N_PDU映射到CAN数据帧的不同位置,构成了4种寻址格式:
常规寻址(Normal addressing)-11位CANID、常规固定寻址(Normal fixed addressing)-29位CANID、扩展寻址(Extended addressing)-11位CANID、混合寻址(Mixed addressing)-11或29位CANID,
以常规寻址(SF单帧)为例:
在物理通讯场景下,即一对一的通讯方式:
在功能通讯场景下,即一对多的通讯方式:
责编:Lefeng
文章来源及版权属于汽车电子与软件,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
汽车电子与软件
汽车电子与软件
进入专栏
分享到:
返回列表
上一篇:
如何看连接器行业和这门生意
下一篇:
美国亚马逊2022年4月PD充电器榜单
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
射频微波类国家级实验室汇总
在射频微波领域,也有很多国家重点实验室,大多数国家重点实验室依托于高等院校,也有一些依托于企事业单位,这些重
2023年国内10家上市逆变器企业CEO薪酬揭秘
本文将对2023年国内10家上市逆变器企业的CEO薪酬进行分析,通过客观的数据对比,展现各企业的发展态势和行业竞
拆解报告:迪比科90W双USB-C快充充电器
充电头网拿到了DBK迪比科推出的90W双USB-C充电器,这款充电器采用银色方形外壳,配有国标折叠插脚,方便收纳与携
2024年8月激光雷达市场分析报告
中国企业在全球激光雷达市场中占据了主导地位,2024年中国企业的市场份额高达84%。中国激光雷达企业的成绩背
评测Apple Watch Series 10
为了完整体验Apple Watch Series 10,我爱音频网从该手表的外观设计、连接使用、数据实测三方面进行了详细体
拆解报告:绿联100W 3C1A四口氮化镓充电器
本期为大家带来的是绿联100W四口氮化镓快充充电器X564的拆解,与此前的绿联100W氮化镓充电器X757相比,外观风格
日本车企的电动汽车规划:全面盘点
中国电动汽车增长影响到了日本企业,特别是2024年日系在中国普遍遭遇了很大的挑战···
拆解报告:果子理45W双USB-C氮化镓充电器
近期充电头网拿到了GOSIRY果子理品牌的一款45W快充充电器,这款产品不仅采用时下热门氮化镓技术设计,同时配置
拆解报告:Apple苹果AirPods 4真无线降噪耳机
Apple苹果AirPods 4真无线降噪耳机外观延续了上代的半入耳式设计,全新的内部耳腔构造与舒适轮廓,带来舒适清爽
2023年逆变器上市公司前五大供应商采购额情况分析
在当今的全球经济中,供应链管理对于企业的成功至关重要。逆变器行业,作为新能源领域的关键一环,其供应链的稳定
拆解报告:小米50W车载无线充电器
充电头网拿到了小米新款车载无线充电器MDY-17-EZ,这款新品在外观上做了升级设计,看上去更加精致。而性能方面,
2023年国内五家电容类上市企业现金流情况
现金流对上市企业至关重要。它不仅是企业日常运营的血液,还反映了企业的盈利质量和偿债能力。充足的现金流能
拆解报告:移速25000mAh能量星球充电宝M25
移速能量星球笔记本充电宝采用醒目张扬的外观设计,并设置了大屏幕多功能信息屏方便了解设备充电情况。电池组
德国汽车工业的衰弱-零部件篇(上):欧洲零部件企业下调业绩预期
2024 年欧洲的汽车零部件普遍进入断臂求生的时刻。我们对德国汽车零部件产业分成两篇盘点,一方面看零部件企
小鹏和理想在智能驾驶领域的进展
小鹏汽车和理想汽车在2024年发布了各自的智能驾驶技术···
8月电池产出加速,备战年底冲刺
2024年8月,中国动力及其他类型电池的总产量为101.3GWh,比上个月增长了10.4%,比去年同期增长了36.8%。今年1月至
详细对比:苹果AirPods 4降噪版与普通版有何区别?
为全面了解AirPods 4 降噪版和普通版的具体区别,我爱音频网对两款产品进行了详细的测试与体验,主要为外观设计
拆解报告:加州数位TS3雷电3扩展坞
加州数位TS3扩展坞采用铝合金外壳,提供良好的散热效果。在扩展坞机身前部设有3.5mm耳机和麦克风插座,并设有US
拆解报告:小米6A USB4编织高速数据线
小米推出了一款USB4编织高速数据线,整体采用米系一贯简单利落的设计风格,属于越看越耐看的类型。线缆长度为1m
长城汽车第38周销量数据详解
9月第3周(9月-16日-22日),长城汽车的数据大家很关心,我们把周度数据做成了一张图,然后简要的点评一下···
微通道液冷是什么?它又能如何优化电子设计
小型电子设备在冷却方面面临着独特的挑战。尽管随着芯片功能的增加,热管理问题日益受到关注,但设备尺寸越小,留
热泵背后的技术:智能功率模块
热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核
没有优质探头,示波器 ADC 分辨率再高也无意义
为了实现准确的信号测量,示波器必须通过探头连接到被测电子电路。探头发挥着重要作用,能够确保到达示波器的信
一个小改动,让铜线恒温器效率达94%
对于热线恒温器来说,虽然它也融合了传感器和加热器,但他们仍然与传递装置保持分离。因此,它在线性模式下工作时
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
EDA/IP/IC设计
制造/工艺/封装
物联网
安全与可靠性
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了