首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC Shanghai 2025
IC设计成就奖投票
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
UDS网络层介绍
时间:
2022-05-05
作者:
汽车电子与软件
阅读:
分享
扫码分享到好友
海报分享
汽车故障诊断 UDS(Unified Diagnostic Service)是利用ECU监测控制系统各组成部分的工作情况,发现故障后自动启动故障记录和处理逻辑。
一、UDS概述
汽车故障诊断 UDS(Unified Diagnostic Service)是利用ECU监测控制系统各组成部分的工作情况,发现故障后自动启动故障记录和处理逻辑。汽车故障诊断模块不仅能够存储记忆汽车故障,还能够实时提供汽车各种运行参数。外部诊断设备通过一定的诊断通信规则与ECU建立诊断通信,并读取这些故障和参数,同时解析出来供外部测试人员分析。其主要遵循:ISO-15765、ISO-14229诊断协议。经常应用在整车的各种整车上的电控单元(ECU)上面。
二、UDS基本原理
1、UDS协议栈
UDS协议栈主要分为
网络层
和
应用层
两大部分
网络层
:是为了解决ISO 11898 协议中的经典can数据链路层与UDS 应用层 ISO 14229 协议中定义的应用层,彼此的数据长度不一样问题。经典can数据链路层最大支持8字节,但 ISO 14229 不仅仅支持can总线设计的,其最大容量是达到4095字节。如UDS应用需要发送20字节数据信息,而can不能一帧报文处理完,需要3帧才能发送完毕。那么如何将多字节数据通过can进行有效,有序的传输呢?ISO 15765-2 由此而生。网络层分为单帧和多帧,单帧(SF)就是一帧can报文8字节内就可以把uds数据处理完毕。多帧就是一帧can报文8字节内处理不完,需分为首帧(FF),流控帧(FC),连续帧(CF)来处理。网络层还有时间参数,如N_Ar、N_As、N_Br、N_Bs、N_Cr、N_Cs。后续网络层会详细讲解。
应用层
:应用层协议通常作为确认消息的传输,意味着从客户端发送的每一个请求都将有由服务器端产生的与之相对的响应。
2、功能寻址与物理寻址
由客户端诊断设备(诊断仪Tester),发出诊断请求,服务端server响应客户端请求。客户端可以使用
功能寻址
(一条报文对应本网络中所有Server(ECU),一般为报文ID为7DF),也就是说本网络中所有ECU都要对这条指令做出响应,即一对多模式。
客户端也可以使用
物理寻址
(是一种点对点的寻址模式,一条报文对应于单独一个Server(ECU))单独跟网络中某个ECU服务端进行通讯,即一对一模式。
功能寻址和物理寻址是每一个具备UDS诊断功能的ECU,所具有的两个CAN_ID,整车上规定每个ECU功能寻址的CAN_ID相同,一般设置为0x7DF。整车上也规定每个ECU的物理寻址CAN_ID 都是唯一的。
三、网络层概要
网络层功能
应用层诊断服务can数据帧的转发;
多帧数据传输,进行数据的打包、解包,协调上下层工作;
单帧报文传输
多帧报文传输
四、网络层协议
协议数据单元(N_PDU)
N_PDU一般包含3个领域,N_PDU:{ N_AI, N_PCI, N_Data }如图所示
协议控制信息(N_PCI)结构
网络层对于N_PDU分为单帧、第一帧(首帧)、连续帧、流控帧这四种类型,每种类型是通过协议控制信息(N_PCI)进行区分的,每一个N_PDU都只有一个N_PCI。通常对于CAN诊断来说,就可以通过识别每条CAN帧数据域的首个字节来确定它属于四种类型中的哪类。下面对这四种类型进行说明。
单帧(SF)
单帧顾名思义就是一帧can报文就可以处理完uds服务。can报文首字节为N_PCI字节,控制信息如下图所示:
从上图可知,can报文首字节高4bit为0表示首帧,首字节低4bit表示单帧数据长度,即N_Data的有效字节数。通过trace我们可以看到N_Data有效字节数为3,有效字节数不足8字节,可填充任意数,这里填充00。因此如图所示的trace,在接收方接收到该can报文后,解析can报文首字节03便可知该报文为单帧且只有3个有效字节数,后续全为补充的无效字节数。
第一帧(FF)
发送方发送N_Data数据过长时,则需要拆分成多帧报文,被拆分后的报文需要通过多个N_PDU来发送,而接收方接收到多个N_PDU信息后进行重组。发送方发送多帧时,需要先发送首帧来告知接收方有多少字节数要发送到接收方。首帧控制信息如下图所示
从上图可知,can报文首字节高4bit为1表示首帧。首字节低4bit和byte2组合12bit表示发送方发送的数据长度,即N_Data的有效字节数。通过trace我们可以看到N_Data有效字节数为0x018,即24个有效字节数。因此如图所示的trace,在接收方接收到该can报文后,解析can报文前两个字节0x10 0x18便可知该报文为第一帧且有24个有效字节数,后续全为补充的无效字节数。
流控帧(FC)
UDS多帧通讯时:1、发送方发送首帧FF给接收方。2、接收方接收到首帧,解析首帧。3、接受方根据自身条件判断后(如:接收数据缓存大小,接收数据快慢能力,当前是否可以接收数据等),回复一帧流控帧FC给发送方。4、发送方根据接收到接收方的流控帧FC来决定后续的操作。流控帧FC控制信息如下图所示:
从上图可知,can报文首字节byte1高4bit为3时表示该帧为流控帧FC。byte1低4bit为流状态FS(
0表示继续发送、1表示等待、2表示溢出即第一帧中的FF_DL信息的长度超过接受实体缓冲区的大小
),byte2为块大小(允许一次可连续发送连续帧CF的次数),byte3为发送方发送连续帧CF与连续帧CF间的最小间隔时间。
连续帧(CF)
发送方发送首帧FF,然后接收到接收方的流控帧FC后,若条件允许可继续发送信息,则需根据连续帧CF的控制信息格式来发送信息。连续帧CF控制信息如下图所示:
从上图可知,can报文首字节byte1高4bit为2时表示该帧为连续帧CF。byte1低4bit 为连续帧的顺序号SN。对于所有的拆分信息,SN开始于0。第一帧应当分配值为0。虽然第一帧 N_PCI没有明确表示出序列号,但是应该将首帧当作0号序列对待,第一个流控帧FC后的连续帧SN设置为1,同一拆分信息上,每一个新增的连续帧顺序号SN增1,连续帧顺序号SN的值不受流控帧的影响,当连续帧顺序号SN值为0x0F时,下一个连续帧中将顺序号SN重置为0。
如图为多帧举例:
定时参数
网络层定义了N_Ar、N_As、N_Br、N_Bs、N_Cr、N_Cs六个时间参数
对上述图片进行归纳,可以总结出几种超时:
N_As超时:发送方没有及时发送N_PDU。
N_Ar超时:接收方没有及时发送N_PDU。
N_Bs超时:发送方没有接收到流控帧。
N_Cr超时:接收方没有收到连续帧。
N_Br超时:接收方没有发出流控帧。
N_Cs:即STmin,发送两个连续帧需要等待的最短时间,N_Cr最大1000ms。
五、寻址方式
将N_PDU映射到CAN数据帧的不同位置,构成了4种寻址格式:
常规寻址(Normal addressing)-11位CANID、常规固定寻址(Normal fixed addressing)-29位CANID、扩展寻址(Extended addressing)-11位CANID、混合寻址(Mixed addressing)-11或29位CANID,
以常规寻址(SF单帧)为例:
在物理通讯场景下,即一对一的通讯方式:
在功能通讯场景下,即一对多的通讯方式:
责编:Lefeng
文章来源及版权属于汽车电子与软件,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
汽车电子与软件
汽车电子与软件
进入专栏
分享到:
返回列表
上一篇:
如何看连接器行业和这门生意
下一篇:
美国亚马逊2022年4月PD充电器榜单
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
2024年澳大利亚市场回顾:中国品牌与市场格局的双重变奏
2024年澳大利亚新车市场在多重挑战中实现小幅增长,丰田、福特等传统品牌继续稳固地位,中国品牌则凭借高增长率
过孔的设计孔径是真的很重要,但高速先生也是真的不关心
设计孔径、完成孔径和钻孔孔径这三个孔径到底一样不一样嘛?
拆解报告:希辉达35W带伸缩线氮化镓充电器
希辉达35W带伸缩线氮化镓充电器本质是配备双USB-C接口,但将其中一个设计成时下受欢迎的伸缩线,免去了用户日常
2025年第3周:全球最快四足机器人发布
2025年将成为机器人产业的关键时间点,业内预期27年人形机器人出货量可达50~100万台。从技术进步到供应链成熟
上海2025年新能源牌照政策压哨更新!哪些细节值得关注?
千呼万唤中,上海 “绿牌” 政策压哨更新!就在距新年不到两小时之际,修订版的 2025 年上海绿牌政策重磅出炉··
2025年第1周新能源周销量,开门黑
25年第一周,这个数据还是受到了购置补贴和报废补贴空档期的影响。传统能源占比 59.8%,新能源占比 40.2%。12.3
拆解报告:航嘉EasyCombo 3S USB延长线插座
航嘉EasyCombo 3S延长线插座延续EasyCombo 6S的设计语言,但因只配备3位AC插孔,机身尺寸会更小,相对更适合外带,
拆解报告:联想thinkplus 100W USB-C快充数据线
联想这款USB-C数据线长度为1米,线缆两头为双层塑料壳设计,并印有thinkplus字样。实测线缆支持100W功率传输,适
2024年前三季度全球前五大智能穿戴厂商
据调研机构最新调研报告,2024年前三季度全球前五大智能穿戴厂商是华为、Apple、小米、三星和步步高。前三季
本田与日产整合:日本汽车行业的一条出路?
本田与日产的整合,这是日本汽车产业在丰田体系之外,应对全球竞争格局骤变的主动求变之举···
拆解报告:Verizon 45W USB-C快充充电器
Verizon 45W快充充电器为方块设计,配有折叠插脚,携带方便。产品配有指示灯,能够指示充电状态,同时支持45W输出功
雷军的汽车梦:小米2024的成功密码与2025新目标
2024年,小米汽车通过技术积累、清晰战略和精准产品定位,在智能电动车市场取得了阶段性胜利。展望2025年,小米将
拆解报告:OPPO磁吸移动电源5000mAh
OPPO磁吸移动电源5000mAh拥有10W的无线和有线快充能力,支持12W最大输入功率,外观精美轻薄,配备电源开关键和LED
拆解报告:BULL公牛电动汽车放电转接头
公牛这款放电转接头为圆柱造型,并附带收纳袋,转接头长度仅为120mm,重量为280g,体积小巧精致。这款转接头支持10A
2024年汽车终端销售数据全面盘点!
12月的汽车终端销售数据出来了,12月销量276.3万辆 , 2024年全年销量为2336.3万台···
CES|禾赛科技发布激光雷达新品,从智能驾驶拓展到机器人
在 CES 2025 上,禾赛科技推出了一系列新的激光雷达产品,包括1440线的AT1440、超广角固态雷达FTX以及面向机器
11月希腊汽车市场,比亚迪闯入前十
希腊车市在2024年11月迎来销量回暖,但增长的动力显然来自新能源领域,尤其是以比亚迪为代表的中国品牌的崛起。
在过去的一年里,“芝能”做了什么?
今天是2024年的最后一天,给大家汇报一下我们一年的情况···
益莱储2025新年回顾展望:租赁赋能客户创新蝶变
回首2024 年,全球科技产业蓬勃发展,推动社会进步。这股浪潮深刻影响企业运营,租赁业务愈发重要,帮企业解决诸多
2024年销量同比增长38.4%,年终复盘奇瑞做对了哪些?
奇瑞集团2024年全年销售汽车达到历史性的260.39万辆,同比增长38.4%,创造了年销量的历史新高···
使用MSO 5/6内置AWG进行功率半导体器件的双脉冲测试
在本文中,宽禁带功率器件供应商Qorvo与Tektronix合作,基于实际的SiC被测器件 (DUT),描述了实用的解决方案··
嵌入式Rust:我们如今身处何方?
Rust对于一般应用开发来说很有意义,但对于嵌入式软件团队来说真的有意义吗?Rust如今的情况如何,它是否就是大家
毫米波雷达与音频技术重塑汽车驾乘新体验
汽车行业的发展正由两大创新领域主导:更为精准可靠的车内感知系统和高质量音频系统。传统方法如增加传感器或
631.2亿美元的市场,创新制造工艺将为柔性电子带来什么?
柔性电子设备的新型制造技术正在迅速涌现。有些人可能想知道它们是否比传统方法更好,以及它们什么时候会商业
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
制造/工艺/封装
EDA/IP/IC设计
安全与可靠性
测试与测量
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了