摘要:本文讨论了信号经过傅立叶变换所得频谱的物理意义,其中着重于负频率成分。许多信号与系统的教材中,都认为负频率成分没有物理意义。本文以多方面的实例证明了负频率成分不但具有明确的物理意义,而且有重要的工程应用价值。文章还用Matlab程序演示了如何用几何方法求傅立叶反变换,把集总频谱合成为时域信号,从中也可鲜明地看出负频率成分的意义。
频率的原始定义是每秒出现的次数,可用以衡量机械运动、电信号、乃至任何事件重复出现的频度,这当然不存在有“负”的概念。当用频率描述圆周运动时(即进入了二维信号平面),产生了角频率ω的概念。从机械旋转运动出发,ω=dθdt定义为角速度。对于周期运动,角速度也就是角频率。通常以逆时针为正,因此转动的正频率是逆时针旋转角速度,负频率就是顺时针旋转角速度。正号和负号是非常自然形成的,不存在有无物理意义的问题。
电的单位向量(电压或电流)围绕原点的转动,可以用0 表示,这是在电路中都清楚的。θ的正负所代表的物理意义从来没有什么争议,它的导数ω=dθ/dt的物理意义不言自明。取正取负都不影响定义,为什么取负就会失去物理意义了呢?
* * * * * * * * * * * * * * * 仔细看图 方能明白其中的真谛* * * * * * * * *
在信号与系统课程中为简化问题,便于初学者掌握概念,开宗明义地把研究范围限定于实信号f(t),也就是在电压旋转向量)中,只研究它在实平面或虚平面上的一个投影sin(ωt)或cos(ωt),研究复信号 ejωt的特性与只研究实信号sin(ωt)或cos(ωt)是两个不同的层次。前者(复信号)是反映信号在空间的全面特性,如图1所示。后者(实信号)只研究了信号在一个平面(x-t或y-t组成的平面)上投影的特性。这就必然要丢掉一些重要的信息,以致x=sin(ωt)与sin(−ωt)在z-t平面中的波形没有任何差别,这是人们对负频率的意义产生疑问的直接原因之一。很显然,在x-t 或y-t的平面内,是不可能看出旋转的。既看不到θ ,也看不到ω 。只有在x-y平面上才能看到这两个旋转参数。
图1 复信号ejωt
同样,用 ejωt、sin(ωt)或cos(ωt)作为核来做傅立叶变换所得的结果也是复信号全面,实信号片面。对实信号做傅立叶变换时,如果用指数ejωt为核,将得到双边频谱。以角频率为n的余弦信号为例,它有具有位于±n两处的、幅度各为0.5、相角为零的频率特性。它的几何关系可以用图2表示。两个长度为0.5的向量:分别以士n等速转动,它们的合成向量就是沿实轴方向酌余弦向量 简沿虚轴方向的信号为零。可见必须有负频率的向量存在,才可能构成纯粹的实信号。所以欧拉公式)
图2 实数信号由正负频率复向量合成
4)多普勒频率
多普勒频率又是一个负频率的实例,如果信号的发射源向我们运动而来,那么多普勒频率就是正频率;如果信号的发射源向我们远离而去,那么多普勒频率就是负频率,在这里正负频率都是有明确物理意义的。多普勒频率虽是一种差频,它表现为合成信号的包络频率,因此仍然符合上述的原理,在实信号域只能求出多普勒频率的大小,但检测不出它的正负。要得到负频率,必须从复信号域考虑。可见,不懂得这一点,就无法找到多普勒测速的原理框图。
归根到底,转角和频率的正负,必须在x-y平面或二维信号中才能观察到。因为观察的方法不对,看不到其意义,从而否认它的存在,这是认识论上的错误,不是科学的方法。这就和“瞎子摸象”的故事所说的那样,摸象腿的人否认象有鼻子,毛病出在他的验证方法。他老想在象腿(实信号域)上找到象鼻子(负频率),当然也永远找不到。正确的方法是必须换一个角度,摸别的部位(复信号域),才能得到全面的知识。
某些学者不承认负频率是由于把“频率是每秒钟循环的次数”的陈旧概念绝对化,其实频率的概念是不断发展充实的。每秒次数的概念只能粗糙地研究信号外部形态,无法涉及信号每周期内部的细微波形特征,而这恰好是傅立叶变换的任务。从它的核已经可以清楚地看到,正是它摒弃(或发展)了原始的频率定义,采用了角频率的概念。单位是弧度/秒,而且具有明确的方向和正负号。其实频率的概念还在继续发展,进入到数字信号处理时又进一步出现了数字频率,它的单位是弧度(去掉了分母上的“秒”),取值范围是[-π,π]。它的物理意义已变为两次采样时刻之间向量转过的角度,在文献[1]中对此有详细的说明。如果停留在“每秒次数”的旧概念上,那“数字信号处理”也就无法发展了。
这个问题是从教学中提出的,作者在旁听“信号与系统”课程时,在老师的幻灯片上看到了“关于双边谱,负频率只有数学意义,没有物理意义”的提法。我们觉得这是个错误,而且恐怕不是个别老师的想法。回来一查,果然如此,很多相当权威的主流教材上都这么写。
其实,“×××只有数学意义,没有物理意义”这样的“命题”谁也没有证明过,也是无法证明的,它最多只能算是猜想。只要有一个反例就可被推翻,本文已经举出了多个反例,说明它是完全错误的。教师绝不该把错误的猜想说成真理,更不能写在书上和幻灯片上去误导学生。数学是更抽象、更深刻地描述物理现象的工具,而物理是实证的科学。限于条件,人们往往暂时还认识不到数学定理的物理意义。数学超前物理是科学史上多次出现的现象,比如虚数、非欧氏几何等。这时应该努力去理解它,认识它,而不是轻易地放弃它、否定它。自己没想通,没找到的事物,不能说它不存在。给学生讲课时,只能说“我们目前还没有想通×××的物理意义”。这才能表明教师在科学上的严肃和谦逊,也有助于培养学生的科学钻研和创新精神。
6.结束语
讨论这个问题,不仅是理论上的探讨,对于提高教学质量是有重大意义的。今天,信息技术如此的发展,很大程度是由于深入大量地开发频谱资源的结果。在同学刚进入这个资源库的时候,我们要引导他们对这个宝藏发生极大的兴趣,非常珍惜这个宝藏,去深钻,去挖掘它的每一点潜力。不能为了省事,为了堵住学生的好奇提问,轻率地、毫无根据地一句话就把频谱的负频率半边扔掉了。在入门的时候,当然不可能把本文说的概念统统灌输给学生,要顺序渐进。但老师首先要有更宽广的知识面和更科学的思维方法,教出的学生的才会具备更多的想象力和创造性。