首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC Shanghai 2025
IC设计成就奖投票
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
硬炭材料及其性能结构调控
时间:
2023-01-29
作者:
充电头网
阅读:
分享
扫码分享到好友
海报分享
目前,世界各国都开展了对于钠离子电池的研究。2020年美国能源部杜宇电池研究计划的布局中明确将钠离子电池作为储能电池的发展体系;欧盟储能计划“电池2030”将钠离子电池列在非锂离子电池体系的首位;“地平线2020研究和创新计划”将钠离子材料作为制造用于非汽车应用耐久电池的核心组件重点发展项目。科技部在“十四五”期间实施“储能与智能电网技术”重点专项,并将钠离子电池技术列为子任务,进一步推动钠离子电池的规模化、低成本化、提升综合性能。
zEYednc
工信部锂离子电池及类似产品标准工作组于11月28日~29日举办“钠离子电池产业链与标准发展论坛”。本次论坛由中国电子技术标准化研究院联合中关村储能产业技术联盟主办,钠离子电池相关产业链企事业单位共同参与。
此次大会旨在为钠离子电池产业链企业搭建一个交流的平台,同时也为钠离子电池行业相关人员提供一个了解钠离子电池产业最新资讯的窗口。使参会企事业单位加强合作交流,促进钠离子电池产业健康持续发展。期间,18位行业大咖与大家共同探讨钠离子电池的发展现状与市场前景。
来自厦门大学能源学院、嘉庚创新实验室的郑志锋教授在本次钠离子电池产业链与标准发展论坛上发表了《硬炭材料及其性能结构调控》主题演讲。
郑志锋教授个人简介,郑志锋教授所从事的研究方向为储能与碳材料,曾作为访问学者访问美国可再生能源国家实验室、美国路易斯安那州立大学,发表论文230余篇,授权国家发明专利20余项,获云南省科技进步二等奖等奖项。
2021年10月国务院发布《2030年前碳达峰行动方案》,规定2030年前二氧化碳排放达到峰值。2060年前实现碳中和。大力推动能源绿色低碳转型行动与交通运输绿色低碳行动。
近年来,我国密集出台储能政策,在《十二五规划》《十四五规划》中都有提到,要求实现碳达峰碳中和,努力构建清洁低碳、安全高效能源体系。
储能产业作为战略性基础产业,涵盖范围包括智能电网、风能发电、光伏发电、电动车、通信电源、电子产业、军工产品多领域。新型电力产业具有安全可靠性、环境友好性、经济性和可持续发展能力。
目前,世界各国都开展了对于钠离子电池的研究。2020年美国能源部杜宇电池研究计划的布局中明确将钠离子电池作为储能电池的发展体系;欧盟储能计划“电池2030”将钠离子电池列在非锂离子电池体系的首位;“地平线2020研究和创新计划”将钠离子材料作为制造用于非汽车应用耐久电池的核心组件重点发展项目。科技部在“十四五”期间实施“储能与智能电网技术”重点专项,并将钠离子电池技术列为子任务,进一步推动钠离子电池的规模化、低成本化、提升综合性能。
钠离子电池具有安全性高、储量丰富成本低、兼容现有的锂电设备、集流体均为铝箔、双极性电池、钠离子溶剂化能低、低盐浓度电解液、高低温性能优异等优势。
当前国内外企业对于钠离子电池的研究现状分析。
钠离子电池成本与锂离子电池成本对比,钠离子材料成本降低30-40%。钠离子电池负极材料一般为硬碳、软碳、复合碳等无定形碳材料。
钠离子电池负极材料一般为硬碳、软碳、复合碳等无定形碳材料。硬碳又称为难石墨化材料,是指在2500℃以上的高温下也难以石墨化,一般在500-1200℃范围内热处理得到,常见的硬碳材料有树脂碳、碳黑等。软碳又称为易石墨化碳,是指在2500℃以上的高温下能石墨化的无定形碳,常见的软碳材料有石油焦、针状焦、碳纤维等。
硬碳相较于石墨储钠能力更强,因其由任意相互交错的短程有序碳层堆积而成,碳层间形成了较多缺陷和微孔,同时还具有较大的碳层间距。硬碳由于具有较低的嵌钠平台与较高的比容量,且来源丰富,预计未来将成为代替石墨的新选择,尤其是在冷启动和快速充电时更明显。
当前硬碳负极材料主要包括树脂碳类、有机聚合物热解碳类、炭黑类、生物质碳类。当下技术较为成熟、处于领先地位的硬碳负极材料生产企业主要集中在日本。
当前市场日本硬碳材料生产企业与中国硬碳材料生产企业简介。
日本住友电木株式会社硬碳简介,该硬碳属于耐热性和阻燃性很高的酚醛树脂,用于高输出用锂离子充电电池、钠离子电池负极。具有粒径数um,结晶间距约为4埃,大于石墨的3.4埃,凝固后作为负极使用时,便于锂/钠离子进出,在低温环境与石墨相比,可将单元电阻减低20-30%。但存在着放电电压容量变化大,首次充放电效率低于石墨化碳等问题;预计发展方向在掺杂/包覆改性、孔径/石墨化等结构优化。
由吴羽电池材料株式会社生产的硬碳材料结晶微小。Li+/Na可嵌入的Edge Site遍布粒子内部,石墨材料因其高度结晶性,Edge Site较少,Li+/Na可嵌入的部位较少。
JFE化工株式会社利用专有技术从煤焦油制造的硬碳。具有比石墨更出色的输出与耐久性,拥有适合混合动力汽车等环保车性能,可用于锂离子二次电池负极材料;锂离子电容器、钠离子电池等负极材料、炭素·树脂复合材料的填充物。
贝特瑞快充硬碳,BHC系列为采用植物原料制备的硬碳,具有优异低温、倍率、循环及安全方面的性能,广泛应用于动力电池、启停电源及钠离子电池等。
SIBs硬碳负极储钠机理主要分为“嵌入-孔填式”机制、“吸附-嵌入”机制、“吸附-嵌入-孔填充”机制、“吸附-嵌入-钠析出”机制。硬碳材料不同微观结构对储钠机理有影响。
SIBs硬碳负极材料前驱体材料主要分为生物质前驱体、糖类前驱体、合成树脂前驱体、沥青前驱体四种。
硬碳负极功能化设计与性能结构调控,结构工程主要为离子扩散路径调控;缺陷工程为电子结构调控、表面工程为物理化学性质调控、预钠化。
结构工程-离子扩散路径调控主要采用形貌结构设计与孔调控。
缺陷工程-电子结构调控主要分为单原子掺杂与多重杂原子掺杂。
表面工程-物理化学性质调控主要分为表面氧官能团功能化与包覆/复合。
预钠化:富氧柔性碳纸高性能钠金属负极。
责编:Demi
文章来源及版权属于充电头网,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
充电头网
数码设备充电技术及其周边配件(充电头、充电器、充电线材、移动电源及电芯、USB插排)评测、拆解。
进入专栏
分享到:
返回列表
上一篇:
拆解摩米士100W2C1A快充车充
下一篇:
科普:CAN/CANFD采样点及其测试简介
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
拆解报告:Anker Zolo 165W自带双线移动电源
Anker Zolo 165W自带双线移动电源采用锖色柱状设计,配有1C1A接口和两根USB-C自带线,其中C口/线支持PD 100W双
2025年第2周新能源周销量:大众、比亚迪、吉利前三
芝能汽车出品整体市场40.13万辆,环比上升3.9%···
为什么织好的毛衣不会散架?科学家也刚知道是怎么回事
为什么织好的毛衣不会散架呢?科学家们最近发现了其中奥秘。这其中涉及到我们生活中常见的摩擦力以及物质的态
深化绿色承诺,ST与彭水共绘可持续发展新篇章
随着与三安光电的碳化硅合资工厂落地重庆,2024年6月,意法半导体与重庆市彭水自治县同步启动了可持续发展合作
美国自动驾驶监管“转向”:Robotaxi迈向普及之路?
随着美国政府白宫领导人的切换,Elon Musk的影响力扩展到了自动驾驶技术监管领域···
拆解报告:Lenovo联想TC3308开放式耳机
此次将要拆解的Lenovo联想TC3308开放式耳机,搭载了8mm动圈单元,支持数字声音增强算法,支持光束定向传音技术;搭
英集芯投资企业USB3拓展坞评测
近日,充电头网收到一款英集芯投资企业所开发的一款USB3拓展坞,具有 USB3 标准速率,且能便捷连接多设备,下面一起
拆解报告:罗马仕10000mAh自带线移动电源
罗马仕这款自带线充电宝采用低调的黑色外壳设计,自带Type-C输出线、Micro USB输出线和Lightning输出线,满足市
RK3588和RK3576怎么选?有什么区别?
RK3588和RK3576系列作为都是瑞芯微(Rockchip)高性能处理器代表,性能如何?价格如何?作为硬件产品开发的我们,这两
吉利发布“智能汽车全域AI”,极氪智驾控制器应用英伟达Thor芯片
在CES 2025上,吉利以及极氪品牌分别出牌,发布了一系列重磅内容和产品···
拆解报告:漫步者HECATE G2三模头戴式游戏耳机
漫步者HECATE G2三模头戴式游戏耳机在外观方面,黑色配色采用了磨砂+亮面两种工艺结合设计,质感出色,防刮耐磨。
机器狗有什么用?技术和市场发展趋势
机器狗作为机器人领域的重要分支,正逐渐渗透至众多行业,引发广泛关注与变革。其融合机械、电子、控制、人工智
拆解报告:航嘉EasyCombo 3S USB延长线插座
航嘉EasyCombo 3S延长线插座延续EasyCombo 6S的设计语言,但因只配备3位AC插孔,机身尺寸会更小,相对更适合外带,
2024年前三季度全球前五大智能穿戴厂商
据调研机构最新调研报告,2024年前三季度全球前五大智能穿戴厂商是华为、Apple、小米、三星和步步高。前三季
拆解报告:松下电器1200W电吹风
松下EH-NW90电吹风内置10万转高速无刷电机,并具备三档风速和四档风温可选。电吹风内置纳诺怡技术,为秀发提供
拆解报告:小米四合一双头分线器
小米四合一双头分线器具备四个USB-A接口和一个USB-C供电接口,不仅性能方面可以满足日常办公需求,而且也可连接
12月,这些智能眼镜在亚马逊卖爆了
亚马逊作为知名电商平台,其全球性的特质在一定程度上也代表了欧美主流市场的整体需求走向。52XR选取了美国亚
不升级板材,怎样能降低损耗,让眼图裕量变大?
一般我们layout时,trace要么走内层,上下都是参考层的带状线,要么走在表层,下面是参考层,上面是绿油和空气的微带
曹则贤:经典力学:与数学创造同行(上)
2024年12月31日,由中国科学院学部工作局、上海市科学技术委员会、上海广播电视台主办,中国科学院物理研究所、
越南11月汽车市场销量同比增长58%
越南汽车市场在2024年11月实现销量大幅增长,显示出市场对经济复苏和政府支持政策的积极响应。然而,目前市场仍
使用MSO 5/6内置AWG进行功率半导体器件的双脉冲测试
在本文中,宽禁带功率器件供应商Qorvo与Tektronix合作,基于实际的SiC被测器件 (DUT),描述了实用的解决方案··
嵌入式Rust:我们如今身处何方?
Rust对于一般应用开发来说很有意义,但对于嵌入式软件团队来说真的有意义吗?Rust如今的情况如何,它是否就是大家
毫米波雷达与音频技术重塑汽车驾乘新体验
汽车行业的发展正由两大创新领域主导:更为精准可靠的车内感知系统和高质量音频系统。传统方法如增加传感器或
631.2亿美元的市场,创新制造工艺将为柔性电子带来什么?
柔性电子设备的新型制造技术正在迅速涌现。有些人可能想知道它们是否比传统方法更好,以及它们什么时候会商业
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
制造/工艺/封装
EDA/IP/IC设计
安全与可靠性
测试与测量
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了