广告

立方冰存在吗?

2023-03-30 中科院物理所 阅读:
水是宇宙中含量仅次于氢气的物质,而冰是宇宙中最常见的固体,它们是恒星形成的基础,也是生命之源。雪花并不总是“六出”,水结晶可不可以直接形成立方冰?

水是宇宙中含量仅次于氢气的物质,而冰是宇宙中最常见的固体,它们是恒星形成的基础,也是生命之源。ii1ednc

人们对冰的观察可以追溯到公元前。早在西汉年间,就有诗人韩婴发现“凡草木花多五出,雪花独六出”,科技革命先驱开普勒也曾经发出疑问“为什么飘落的雪花总是六角片状?”。ii1ednc

图片来源:http://snowcrystals.com/ii1ednc

现在我们知道,这是因为在自然界中冰是一种属于六角密堆结构的晶体,这种微观的分子排布决定了宏观上冰晶的形貌也往往具有六次对称性。我们将这种晶体结构的冰称之为“六角冰”。ii1ednc

1. 雪花总是“六出”吗?ii1ednc

冰在自然界中随处可见。比如,在天气好的情况下,人们可以看见在太阳周围笼罩着一个或以上的彩色光环。这是阳光透过卷层云时,受到冰晶的折射或反射带来的一种光学现象。由于六角冰通常以冰六棱柱的基面和柱面作为截止面,日晕的视角通常是22度和46度。ii1ednc

但是,在极其罕见的时候,人们可以观察到28度左右的日晕。这种日晕被称为Scheiner’s halo,具体形成机制尚有争议。一种说法为,这时高空中温度较低,卷层云中的冰晶并不是通常的六角冰结构,而是一种类似于金刚石的面心立方结构。这种立方冰会呈现出正八面体的晶体形貌,阳光被这种冰晶折射后就会在28度形成日晕。也就是说,自然界中的雪花也许并不总是“六出”,它也有可能长成钻石的模样ii1ednc

光线透过六角冰(左下)和立方冰(右下)ii1ednc

日晕现象来源于光线透过冰晶时会经历两次折射而发生偏折,其中入射平面与出射平面呈60度时(冰六棱柱中柱面之间的夹角),偏折角度为22度;入射平面与出射平面呈90度时(冰六棱柱中柱面与基平面的夹角),偏折角度为46度;入射平面与出射平面呈70度时(立方冰低能面{111}晶面族的夹角),偏折角度为28度。由于观察者的视觉效应,会将偏折的光线当成直线传播,从而在太阳周围对应视角的地方产生幻影。ii1ednc

2. 神秘的立方冰ii1ednc

虽然早在1629年的罗马,就有关于Scheiner’s halo的记载;诺奖得主Linus Pauling基于剩余熵理论也曾预言了立方冰的存在。而在1943年,德国科学家König通过电子衍射,最早报道了立方冰结构。后来人们在实验室中又通过各种方法,包括冻结纳米液滴法、离解气体水合物法、纳米限域结晶法等方式制备出了立方冰。种种实验迹象以及理论计算认为,冰在形核结晶过程中可能更倾向于形成立方冰,再转变为我们常见的六角冰。于是很长一段时间中,关于水结晶领域的研究集中于立方冰的制备与表征中来。ii1ednc

但渐渐地人们发现,在实验室中无论通过什么方法制备的立方冰,其衍射峰总是偏离理想的面心立方的衍射特征,说明其并不是纯相的立方冰。严格地说,也许自然界并不存在所谓的“立方冰”,它也可能是密堆面上立方冰与六角冰随机堆垛的一种特殊结构。由于缺乏更进一步的表征手段,这种争议一直持续着。ii1ednc

(b) 六角冰、(c) 立方冰、(d) 堆垛无序冰ii1ednc

2020年,意大利和日本两个课题分别报道了两种制备纯相立方冰的方法。他们通过精确控制实验条件,离解不同气体水合物(C0、C2)的方法得到了高纯度的立方冰。那么进一步地,水结晶可以直接形成立方冰吗?影响立方冰形成的关键因素在于什么呢?ii1ednc

3. 从分子水平追踪立方冰ii1ednc

对于水结晶这一物理过程,人类还远远谈不上了解,其研究的主要难点在于人们始终难以在其分子水平上提供相应的实验数据。关于立方冰的争议即是如此,由于生长过程中常伴随缺陷,传统的衍射手段无法将立方冰与堆垛无序冰区分开来。因此,具有高空间分辨率、低损伤的水结冰实时显微成像技术具有十分重要的意义ii1ednc

最近中国科学院物理研究所/北京凝聚态物理国家研究中心白雪冬研究员、王立芬副研究员团队,通过发展原位冷冻电镜,借助像差矫正透射电子显微镜和低剂量电子束成像技术,成功实现了以分子级分辨率观测冰的生长结晶过程,并原位表征结构的演化。ii1ednc

立方冰的分子级成像及形核结晶过程ii1ednc

研究人员展示了-170℃左右的低温衬底上气相水凝结成冰晶的过程,发现了立方冰在这种低温衬底上的优先形核生长。分子级成像证实了水结晶可以形成各种形貌不一的单晶立方冰。而随着时间的增加,冰晶整体中六角冰的占比逐渐增加。研究人员分析,这表明异质界面在立方冰的形成中起着重要作用。而自然界中常见的降雪大多都是水分子在灰尘矿物质等表面的凝聚生长,这种异质界面无处不在。ii1ednc

进一步地,研究人员表征了立方冰内部的常见缺陷。根据是否引进堆垛无序晶畴为标准,研究人员将立方冰内部的常见缺陷分为了两类,并利用电子束的激发效应探究了堆垛无序晶畴部分的结构动力学。实验观测结合分子动力学模拟结果表明,这种富缺陷的结构并不稳定,在电子束的扰动下缺陷层发生结构构型的协同扭曲乃至整体的攀爬。ii1ednc

立方冰中的缺陷在电子束辐照下的动态行为ii1ednc

研究人员注意到,无论在生长过程中还是电子束激发下,立方冰在观测时间内都保持着相当的稳定性,而未发生向六角冰转变的迹象。这种结构的稳定性验证了立方冰在水结冰过程中具有相当大的竞争力,因此可能在该过程中扮演着至关重要的角色。ii1ednc

结语ii1ednc

现在我们已经证实,雪花并不总是“六出”,水结晶也可以直接形成立方冰,而影响立方冰形成的关键因素可能在于无处不在的异质界面。该研究向人们展示了,利用原位透射电镜技术将冰的实验研究深入到分子水平。关于冰,其实还有很多的未解之谜,每一次实验技术的进步都会带给我们全新的认识。ii1ednc

上述工作以“Tracking cubic ice at molecular resolution”为题在线发表在《自然》(Nature)杂志上,中科院物理所王立芬副研究员为文章共同第一作者(2/3)和通讯作者,中科院物理所博士生黄旭丹(1/3)和北京大学博士生刘科阳同为第一作者,北京大学陈基研究员、王恩哥院士和中科院物理所白雪冬研究员为文章共同通讯作者,合作者还有北京大学物理学院江颖教授、材料学院刘磊研究员以及中科院物理所许智副主任工程师、田学增特聘研究员和王文龙研究员等。该工作得到了国家基金委、中科院、科技部、北京自然科学基金和中科院青促会等项目资助。ii1ednc

文章DOI: 10.1038/s41586-023-05864-5ii1ednc

责编:Ricardo
文章来源及版权属于中科院物理所,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系Demi.xia@aspencore.com
中科院物理所
物理所科研动态和综合新闻;物理学前沿和科学传播。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
广告
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了