广告

阻抗匹配相关知识总结

2023-04-24 射频学堂 阅读:
阻抗匹配,作为射频设计中最为重要的一个环节,每一个射频工程师都无法绕过去的。今天我们再加以总结,把整个阻抗匹配,展现给大家。

阻抗匹配,作为射频设计中最为重要的一个环节,每一个射频工程师都无法绕过去的。今天我们再加以总结,把整个阻抗匹配,展现给大家。 阻抗 三 兄弟 射频工程师必知必会—— 阻抗,特征阻抗与等效阻抗 阻抗,顾名思义就是对电路中电流起到阻碍作用的元器件。我们在射频电路中,又引入了特征阻抗和等效阻抗两个概念。 No.1.1 阻抗 谈到阻抗的概念,大家的第一影响就是电阻和电抗的组合。没错,在低频领域,或者在我们学习的电路原理的课程中,阻抗就是电阻和电抗的组合。 我们借用百度百科的定义就是: 在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧姆。 阻抗可以是电阻、电容、电感的任意组合对电流起到的阻碍作用。由于电容对直流电的阻抗无穷大,而电感对直流电的阻抗是零,因此,阻抗更多用于描述交流电路中对电流的阻碍作用。高阻抗是指阻抗值大,低阻抗是指阻抗值小。 对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。 但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 No1.2 特征阻抗 特征阻抗是射频传输线的一个固有特性,其物理意义是在射频传输线上入射波电压与入射波电流的比值,或者反射波电压和反射波电流的比值。 如果按照分布参数的理论去表示,传输线的特征阻抗可以表示为: 从上式可以看出,对于一个有耗传输线来说,特征阻抗是一个复数,有耗传输线的损耗就来自于这个传输线的电阻。而对于理想的无耗传输线来说,特征阻抗就是一个实数。这也就告诉我们,对于一个理想的无耗的50欧姆传输线来说,其电阻为0,这和上文中的带电阻的阻抗就不一样了。 特性阻抗是射频传输线影响无线电波电压、电流的幅值和相位变化的固有特性,等于各处的电压与电流的比值,用V/I表示。在射频电路中,电阻、电容、电感都会阻碍交变电流的流动,合称阻抗。电阻是吸收电磁能量的,理想电容和电感不消耗电磁能量。阻抗合起来影响无线电波电压、电流的幅值和相位。同轴电缆的特性阻抗和导体内、外直径大小及导体间介质的介电常数有关,而与工作频率传输线所接的射频器件以及传输线长短无关。也就是说,射频传输线各处的电压和电流的比值是一定的,特征阻抗是不变的。对于一个已知特性阻抗的传输线来说,它与频率无关。hnvednc

 hnvednc

相关阅读,可参考长线理论:射频工程师必知必会——长线效应与分布参数hnvednc

No1.3 等效阻抗等效阻抗也是传输线理论的一个概念,我们在设计中,经常要求知道在传输线上指定位置的阻抗是多少。这个指定位置的阻抗就是等效阻抗Z(z),其定义为传输线上该位置处的电压和电流的比值: 注意对比特征阻抗与等效阻抗定义公式之间的区别:特征阻抗是入射波或者反射波的比值,而等效阻抗则是指定位置处入射波和反射波两者叠加之后的比值。这个是位置的函数。对于无耗传输线来说,特征阻抗是固定的,而等效阻抗则随位置的不同而变化。hnvednc

这个位置的变化,还涉及到一个看过去的方向问题。比如我们看向负载还是源,这个所得到的等效阻抗,有时候是有区别的。我们设定观察点,向负载看去的等效阻抗,就是负载阻抗。 如上图所示,如果我们在指定的位置z处截断,在负载处用一个阻抗为Z(z)的来代替系统中的负载部分,那么对于截断点到电源部分的电压和电流分布将不会改变,这说明Z(z)与截断的电路ZL相等,Z(z)就是负载的等效阻抗,或称为负载阻抗。hnvednc

相反,如果我们向源的方向看去,我们把源到截断点的阻抗用Z(z)来替代Zin,那么从截断点到负载的传输特性也不会改变,那么这个Z(z)就可以表示为系统的输入阻抗。 等效阻抗与特征阻抗的关系可以用反射系数来计算。 只要知道传输线上指定位置的反射系数,就可以得到其等效阻抗。相应的,如果知道传输线上的等效阻抗,就可以求出该位置的反射系数。 我们如果用传输线上的电流和电压方程来表示等效阻抗Z(z)的话,我们还能够发现一个更有趣的现象。hnvednc

电流和电压方程: 带入等效阻抗方程可得到: 注意观察上述方程,您是否注意到方程里面的那个Tan,也就是说,在无耗传输线上等效阻抗是三角函数的复合函数。由于三角函数的周期性特征,无耗传输线上的等效阻抗也必然具有周期性。这个周期就是pi,180°。 至此,我们不难发现,在传输线上,任意相距二分之波长和其整数倍的位置,其等效阻抗相等。 二是在传输线上,任意相距四分之一波长极其整数倍的位置等效阻抗满足如下关系式: 这就巧了,当负载处阻抗等于0时,那么距离负载二分之一波长整数倍的地方阻抗也等于零,在距离负载四分之一波长整数倍的位置等效阻抗则为无穷大。hnvednc

相反,当负载阻抗为无穷大时,上述结论也翻一下。这不就是开路短路状态的转化吗?在射频设计中,会经常用到哦。您用过没? 为什么要阻抗匹配 阻抗匹配就是为了电磁波能够更好的传播。我们总是希望有用的射频信号能够无衰减或者小衰减的传输到负载,如果阻抗不匹配的话,反映到系统的就是该器件的回波损耗差。回波损耗也是损耗。这个反射回去的射频信号,会对系统造成很大的影响,甚至烧坏某些器件。 什么是回波损耗?什么是插入损耗? 我们通过例子讲述了回波损耗到底反射回去多少射频功率。 电磁波功率P1 从端口1进入网络,从端口2出来。由于在端口1处存在不匹配,那么有一部分电磁波功率P1- 反射回去。 回波功率P1-应该怎么算呢? 对于一个双端口网络,我们只要知道其S2p文件,就可以确定网络的特性,至于网络内部到底是什么样子,我们不用关心,有时候也不需要去关心。 我们再来看一下回波损耗的定义。回波损耗就是反射损耗,是反射系数的dB形式。 那么问题就转换成了已知输入功率P1和回波损耗RL,求回波的功率P1-。 根据上面公式,直接求,就可以算出来了。公式如下。 那我们再两边同时取dB呢?也就是 加上 10log,就成了下面形式。 通过上述计算推导,我们得知,回波损耗的功率就是 输入功率P1加上回波损耗RL(注意,RL此处为负值)。所以对于大功率器件,我们对其回波损耗的要求越严格。对于小信号器件,有时候可以放宽回波损耗的指标。 共轭匹配和负载匹配 共轭匹配的意义是在于信号源能够输出最大的功率到负载,而负载匹配则是负载能够吸收最大的功率。这两种都是我们做匹配负载所要做的。 说起共轭匹配,我们先复习一下共轭的概念。 一提到数学就头疼,共轭是什么玩意?带大家一起回忆一下。共轭就是两个复数的实部相同,虚部符号相反,大小相等,如下图所示,在复平面上,共轭也就是在坐标系里沿着x轴(实轴)镜像了一下。 实现最大功率传输,为什么要共轭呢?我们一起看一下。假设在一个最简单的电路中,如下图所示,Us为信号源电压,Rs为信号源内阻,RL为负载电阻。在什么情况下才能够使得信号源把最多的功率提供给负载呢?也就是如何让信号源的输出功率尽可能大。 利用上面这个简单的电路,很容易得到信号源输出功率与电路元器件之间的关系: 在这里,我们假设: 这时,我们就可得到: 我们就得到了,信号源的输出功率只取决于Us,Rs和RL。当信号源一定时,输出功率只取决于k,负载阻抗和信号源内阻的比值。 取右边的极值呗。我们也可以得到这个功率比和阻抗比的关系曲线。 也就是当k等于1时,即RL=Rs时,负载可获得最大的输出功率,此时的状态为匹配状态。无论负载阻抗大于还是小于信号源内阻,都不可能使得负载获得最大功率,并且这两个电阻值偏差越大,输出功率就越小。 当源阻抗为复数时,我们可以用同样的推导过程进行计算。这时的等效电路如下图所示: 其信号源电压为Vs,信号源内阻为Zs=Rs+jXs。负载阻抗为Z=R+jX。电路中的电流为: 电流的幅度值为: 负载处的功率为: 参照前文到的结论,当R=Rs,X=-Xs时,负载的功率最大,即输出功率最大。这时即有 那么在共轭匹配下,负载能够得到最大的功率是多少呢? 只有四分之一的源功率能够到负载,剩下的到哪去了呢?被源自己的电阻吃掉了。所以我们发现,源都是最热的那一个。 如果负载阻抗不能满足共轭匹配条件怎么办呢?很简单,让他匹配嘛,在源与负载之间加一个匹配网络,将负载阻抗变换为信号源阻抗的共轭匹配。这个阻抗变换就是阻抗匹配的重要方法之一。 如何进行阻抗匹配? 阻抗匹配的方法有很多,我们在之前的文章中介绍了集总参数阻抗匹配电路和阻抗变换器和短截线分布参数匹配,这其中也详细介绍了Smith Chart的用法。但是这其中的匹配都是对于单频点的匹配,其大部分匹配都是窄带的。而宽带匹配电路我们在以后的章节,会详细介绍。 No4.1 集总参数匹配电路 集总参数对应着分布参数,我们知道在低频频段,我们常用的一些电阻电容电感就是集总参数元件。在微波和微波低端的电路设计中,我们也常用到集总参数的元器件,因此采用集总参数元器件来进行阻抗匹配,也是在射频设计中经常用到的。 常见的集总参数匹配电路有三种,L型,T型和Π型。我们在这里一一进行学习。 4.1.1 L型匹配电路 常用的L型匹配电路有两种,如下图所示,即右L(图a)和左L(图b)。这种匹配电路只有两个元器件,简单易做,成本低廉并且性能稳定。应用比较广泛。 在电路匹配中,左L和右L的选择由所需要匹配的负载阻抗和源阻抗的关系决定。 对于负载阻抗RL和源阻抗Rs 都为纯电阻的情况下,详细过程如下: 1, 确定工作频率fc,源阻抗Rs和负载阻抗RL。这就是我们对电路匹配左右处理的对象。 2,根据前文所述的共轭匹配条件,可以推导出: 3, 根据源阻抗和负载阻抗的大小关系进行判断,计算:       如果 Rs          如果 Rs>RL,则选用左L电路进行匹配: 4, 当选出匹配电路形式之后,可利用电感和电容组成的电路进行阻抗匹配。 对于 右L 型电路,可以分为Ls-Cp 低通形式,也可以采用Cs-Lp 高通形式, 如下图所示: Ls-Cp低通电路,电感和电容值可以有以下公式计算: Cs-Lp高通电路,电感和电容值可以有以下公式计算: 至于高通形式还是低通形式可以根据电路设计的需求进行选择。 同理,如果Rs>RL, 则选用左L型,其电路形式依然可以分为低通型和高通型。 低通电路,电感和电容值计算公式: 高通电路,电感和电容值计算公式: 注释,当源阻抗和负载阻抗不是纯电阻时,处理的方法也很简单,只考虑电阻部分,按照上述方法计算中匹配电路中的电容和电感值,再扣除两端的虚数部分,就可得到实际的匹配电路。 4.1.2 T 型匹配电路 T型匹配电路也是一种常见的匹配方法,其一般有三个元件组成,因此复杂度略高于L型。如下图a所示,其常用的四种形式有图b,c,d,e。hnvednc

文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系Demi.xia@aspencore.com
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
广告
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了