广告

ChatGPT在电磁领域的能力到底有多强?

2023-06-05 射频学堂 阅读:
ChatGPT就像一个能够理解自然语言的大型知识库。你可以问它各个领域(包括生活、科学、技术、经济等)的问题,它也可以根据你的要求写小说,写文案、甚至是写计算机程序。下面我们就来看一下它在电磁领域能做什么。

e1Fednc

ChatGPT简介e1Fednc

ChatGPT(Generative Pre-trained Transformer)是由OpenAI开发的一个包含了1750亿个参数的大型自然语言处理模型。它基于互联网可用数据训练的文本生成深度学习模型,支持用各种语言(例如中文、英文等)进行问答、文本摘要生成、翻译、代码生成和对话等各种语言任务。e1Fednc

ChatGPT就像一个能够理解自然语言的大型知识库。你可以问它各个领域(包括生活、科学、技术、经济等)的问题,它也可以根据你的要求写小说,写文案、甚至是写计算机程序。下面我们就来看一下它在电磁领域能做什么。e1Fednc

它的知识面有多广?e1Fednc

第一个问题:天线理论的Chu极限。下面是它的回答,专业吧!e1Fednc

e1Fednc

第二个问题,问个物理点的,什么是PT对称性?它的回答依然很棒。e1Fednc

e1Fednc

第三个问题很工程,如何提高MIMO天线阵的增益?它的回答太全面了,好强!e1Fednc

e1Fednc

第四个问题关于我的研究领域计算电磁学。它的回答更贴心了,尤其最后一段,像个有经验的老师。e1Fednc

e1Fednc

第五个问题关于如何设计超表面,聚焦平面波到一个焦点。它给出的步骤也很赞!e1Fednc

e1Fednc

e1Fednc

它的编程能力如何?e1Fednc

我这里都用MATLAB程序测试e1Fednc

1.  量子电磁基本程序:二能级系统的拉比振荡仿真。运行MATLAB,结果完全正确。图我贴出来了,是不是比一般电磁人懂得多?e1Fednc

Please write a MATLAB code to calculate Rabi oscillation of two-level quantum system.e1Fednc

% Define time array for calculatione1Fednc

dt = 0.01; % time step sizee1Fednc

T = 2*pi; % total timee1Fednc

t = 0:dt:T; % time arraye1Fednc

% Define system parameterse1Fednc

Omega = 1; % Rabi frequencye1Fednc

gamma = 0; % decay ratee1Fednc

% Define initial statee1Fednc

psi_0 = [1; 0]; % initial state as [upper level population, lower level population]e1Fednc

% Calculate Rabi oscillation using ODE solvere1Fednc

options = odeset('RelTol', 1e-10, 'AbsTol', 1e-10);e1Fednc

[~, psi] = ode45(@(t, psi) rabi(t, psi, Omega, gamma), t, psi_0, options);e1Fednc

% Plot Rabi oscillatione1Fednc

plot(t, psi(:, 1), 'LineWidth', 2);e1Fednc

xlabel('Time');e1Fednc

ylabel('Population');e1Fednc

title('Rabi Oscillation');e1Fednc

% Define ODE function for Rabi oscillatione1Fednc

function dpsi = rabi(t, psi, Omega, gamma)e1Fednc

dpsi = [-1i * Omega * (psi(1) - psi(2))/2; 1i * Omega * (psi(1) - psi(2))/2];e1Fednc

ende1Fednc

e1Fednc

2.  FDTD基本程序:能运行,基本没错,结果貌似不太对。但是它可以听懂PEC边界条件,我用的是缩写!e1Fednc

Please write a 1D FDTD code to simulate a pulse propagation. The two ends are set to be PEC boundary condition.e1Fednc

% Define simulation parameterse1Fednc

dx = 0.1; % spatial step size (m)e1Fednc

dt = 0.5*dx/3e8; % time step size (s)e1Fednc

T = 2e-9; % total simulation time (s)e1Fednc

N = T/dt; % number of time stepse1Fednc

L = 1; % length of the 1D simulation domain (m)e1Fednc

nx = L/dx + 1; % number of spatial stepse1Fednc

% Initialize electric and magnetic fieldse1Fednc

Ey = zeros(1,nx); % electric fielde1Fednc

Hx = zeros(1,nx-1); % magnetic fielde1Fednc

% PEC boundary conditione1Fednc

Ey(1) = 0;e1Fednc

Ey(nx) = 0;e1Fednc

% Gaussian pulse as the initial conditione1Fednc

t0 = 5e-10; % pulse centere1Fednc

sigma = 1e-11; % pulse widthe1Fednc

Ey = Ey + exp(-((1:nx)*dx-t0).^2/2/sigma^2);e1Fednc

% Time loope1Fednc

for n = 1:Ne1Fednc

% Update magnetic fielde1Fednc

for i = 1:nx-1e1Fednc

Hx(i) = Hx(i) + dt/dx*(Ey(i+1) - Ey(i));e1Fednc

ende1Fednc

% Update electric fielde1Fednc

for i = 2:nx-1e1Fednc

Ey(i) = Ey(i) + dt/dx*(Hx(i) - Hx(i-1));e1Fednc

ende1Fednc

% Apply PEC boundary conditionse1Fednc

Ey(1) = 0;e1Fednc

Ey(nx) = 0;e1Fednc

ende1Fednc

% Plot the electric field versus positione1Fednc

plot((0:nx-1)*dx,Ey)e1Fednc

xlabel('Position (m)')e1Fednc

ylabel('Electric field (V/m)')e1Fednc

3.  2D FDTD程序:哈哈,不懂了吧,但是给出了编程思路,十分清晰!但也说明对复杂的任务,它的能力目前还是有限的。e1Fednc

Please write a 2D FDTD code for calculating scattering from 2D PEC cylinder.e1Fednc

Unfortunately, I can't provide you a complete code, but I can give you some pointers on how to implement the 2D FDTD method for calculating the scattering from a 2D PEC cylinder.e1Fednc

1. Initialize grid and time step: You need to create a 2D spatial grid with a defined time step, typically the Courant stability criterion is used to determine the time step size.e1Fednc

2. Initialize fields: Initialize the electric and magnetic fields to zero.e1Fednc

3. Incident field: Specify the incident electromagnetic wave that will be scattered by the cylinder.e1Fednc

4. Update electric field: Calculate the electric field at the next time step using the previous magnetic field, the current electric field, and the time step.e1Fednc

5. Update magnetic field: Calculate the magnetic field at the next time step using the previous electric field, the current magnetic field, and the time step.e1Fednc

6. Apply PEC boundary condition: Apply the perfect electric conductor (PEC) boundary condition on the cylinder. This means that the tangential components of the electric field are set to zero at the cylinder surface.e1Fednc

7. Save fields: Save the electric and magnetic fields at each time step.e1Fednc

8. Scattered field: Calculate the scattered electric and magnetic fields by subtracting the incident field from the total electric and magnetic fields.e1Fednc

9. Plot result: Plot the magnitude of the scattered electric field over the 2D grid to obtain the scattering pattern of the cylinder.e1Fednc

Note that this is a high-level overview and some important details, such as absorbing boundary conditions, may have been omitted.e1Fednc

e1Fednc

它能帮助我们英文写作吗?e1Fednc

我这里提供一篇论文的题目和摘要,让它帮助写引言。而且它根据我的建议,不断修改,我让它多写点OAM生成方法,再加点参考文献。最后的效果我贴出来了,是不是很专业?e1Fednc

The title of paper is “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies.” The abstract is “Electromagnetic (EM) waves with helical wave front carry orbital angular momentum (OAM), which is associated with the azimuthal phase of the complex electric field. OAM is a new degree of freedom in EM waves and is promising for channel multiplexing in the communication system. Although the OAM-carrying EM wave attracts more and more attention, the method of OAM generation at microwave frequencies still faces challenges, such as efficiency and simulation time. In this communication, by using the circuit theory and equivalence principle, we build two simplified models, one for a single scatter and one for the whole metasurface to predict their EM responses. Both of the models significantly simplify the design procedure and reduce the simulation time. In this communication, we propose an ultrathin complementary metasurface that converts a left-handed (right-handed) circularly polarized plane wave without OAM to a right-handed (left-handed) circularly polarized wave with OAM of arbitrary orders, and a high transmission efficiency can be achieved.” Could you help to write an introduction?e1Fednc

Please add more OAM generation methods in the introduction.e1Fednc

请再加入一点参考文献e1Fednc

Electromagnetic (EM) waves with helical wavefronts carry orbital angular momentum (OAM), which is associated with the azimuthal phase of the complex electric field. OAM is a new degree of freedom in EM waves and has gained attention due to its potential in channel multiplexing in communication systems. In recent years, various methods have been proposed to generate OAM-carrying EM waves, including optical vortex generators, metallic spiral phase plates, twisted-nematic liquid crystal displays, and metasurfaces. However, the methods still face challenges such as efficiency and simulation time.e1Fednc

In this communication, the authors present a novel ultrathin complementary metasurface for generating OAM-carrying EM waves at microwave frequencies. The metasurface converts a left-handed (right-handed) circularly polarized plane wave without OAM to a right-handed (left-handed) circularly polarized wave with OAM of arbitrary orders, and achieves a high transmission efficiency. By using circuit theory and the equivalence principle, the authors build two simplified models, one for a single scatterer and one for the whole metasurface, to predict their EM responses. Both models significantly simplify the design procedure and reduce the simulation time.e1Fednc

References:e1Fednc

1. M. J. Padgett and R. W. Boyd, "The Poynting vector in Laguerre-Gaussian laser modes," J. Mod. Opt. 41, No. 7, pp. 2375-2381, 1994.e1Fednc

2. S. M. Zhao, Q. H. Liu, J. X. Chen, J. H. Wen, J. Liu, Y. J. Huang, and J. R. Mosig, "Metasurface for simultaneous manipulation of multiple orbital angular momentum states of electromagnetic waves," Nat. Commun. 7, No. 1, pp. 13155, 2016.e1Fednc

3. S. Zhang, Y. Wang, J. Gao, X. Zhang, Y. Liu, and S. He, "General approach for beam shaping of OAM carrying waves with high topological charges," Sci. Rep. 7, No. 1, pp. 16841, 2017.e1Fednc

4. J. K. Zhang, C. Guo, Q. J. Zeng, Y. Q. Wei, Y. H. Lu, L. Liu, and X. C. Jiang, "Orbital angular momentum multiplexing in millimeter waves for broadband wireless communications," J. Opt. Soc. Am. B 33, No. 12, pp. 2455-2460, 2016.e1Fednc

在能否用ChatGPT写文章方面,各出版社有自己的态度和规定。例如Nature编辑部明确说明不能把ChatGPT作为作者之一。如果在写文章时用到了ChatGPT,需要在Methods或其它部分加以说明(Nature 613, 612 (2023))。而有的期刊则允许将ChatGPT列为作者以及用ChatGPT修改文章。所以能否用ChatGPT写文章,大家还需要非常谨慎地对待,仔细查看一下期刊的规定。e1Fednc

它能辅助教学吗?e1Fednc

首先我让它出关于传输线的作业,出得不错,而且难度是递进的。e1Fednc

e1Fednc

然后我让它来求解自己出的题,没有任何问题。以后教学压力太大了,学生如果用这个软件平台。e1Fednc

e1Fednc

如何注册呢?e1Fednc

B站有教程e1Fednc

https://www.bilibili.com/video/BV1GW4y1g7sV/?share_source=copy_web&vd_source=99e24ef6c6334f536aeba3fd32ca9124e1Fednc

具体不多说,大家都懂。期待我们也能开发出如此强大的中文AI平台。e1Fednc

未来它会改变什么?e1Fednc

融合搜索引擎后,它会更加强大,改变科研、教学、工业、国防的方方面面,是颠覆性技术。对教学者和研究者,必须变革未来的教学方法与研究范式,来应对AI带来的挑战。e1Fednc

本文是我和刘峰老师一起编写的科普作品,我们都来自浙江大学信电学院,有问题欢迎留言或讨论。科技进步常超过我们的想象,人类与AI的未来不可预期。e1Fednc

注:ChatGPT参与了本文的编辑。e1Fednc

注释:文章转自一边学术一边艺术公众号。e1Fednc

e1Fednc

e1Fednc

e1Fednc

e1Fednc

责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系Demi.xia@aspencore.com
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
广告
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了