首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
国际汽车电子大会
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC SZ 2024
国际汽车电子大会
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
国际汽车电子大会
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
IIC SZ 2024
国际汽车电子大会
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
详解VSWR和RL
时间:
2023-07-19
作者:
射频学堂
阅读:
分享
扫码分享到好友
在电磁波的传播过程中,当传输线的阻抗发生变化时,就会有一部分电磁波反射回来。反射波和入射波叠加,就形成驻波。
电压驻波比是射频系统中一个常常会遇到的指标参数,是
指驻波波腹电压与波节电压幅度之比,又称为驻波系数、驻波比
。为了弄清楚这个概念,首先我们来聊一下什么是驻波。
驻波是指频率和振幅均相同、振动方向一致、传播方向相反的两列行波叠加后形成的波为驻波,若振幅不相同,则形成行驻波。在行波中能量随波的传播而不断向前传递,其平均能流密度不为零;但驻波的平均能流密度等于零,能量只能在波节与波腹间来回运行。
在两者电压(或电流)相加的点出现波腹,在两者电压(或电流)相减的点形成波节
。在波形上,波节和波腹的位置始终是不变的,给人“驻立不动”的印象,但它的瞬时值是随时间而改变的。如果这两种波的幅值相等,则波节的幅值为零。
如下图所示:绿线和蓝线分别代表两个振幅相同,频率相同,传播方向相反的两个波,红线代表两个行波叠加的状态。观察红线的波形可以看到,能量只在波节和波腹之间来回震荡。
在电磁波的传播过程中,当传输线的阻抗发生变化时,就会有一部分电磁波反射回来。反射波和入射波叠加,就形成驻波。我们在学习
长线效应
时学习到传输线的电压和电流满足以下公式:
式中第一项代表入射波电压或者电流,第二项代表反射波电压或者电流。
PnEednc
如下图所示,假设蓝色曲线代表入射波,红色曲线代表反射波,那么黑色曲线就是入射波和反射波叠加的驻波。当全反射时,反射波振幅等于入射波振幅,那么形成的驻波,波腹为入射波振幅的两倍,波节为0,驻波比为无穷大。当完全匹配时,波腹和波节相等,驻波比为1.实际射频电路设计中,完全匹配状态时不可能存在的。
由于传输线上同时存在入射波和反射波,那么在传输线上任意观察点上的电压和电流都是入射波和反射波叠加的结果。由于反射波振幅一般情况下小于入射波振幅,那么传输线上反射波和入射波叠加的结果时形成行驻波。当反射系数为正实数时,反射波电压和入射波电压相位相同,合成行驻波电压的振幅最大,形成电压波腹;而在该位置反射波电流和入射波电流相位相反(相差180°),合成行驻波的电流振幅最小,形成电流波节。该位置的波腹电压和波节电流分别为:
当反射系数为负实数时,反射波电压和入射波电压相位相反,合成波电压振幅最小,形成电压波节,而该点的反射波电流和入射波电流相位相同,合成波电流振幅最大,形成电流波腹。该位置的波节电压和波腹电流分别为:
PnEednc
而在其他位置上,合成波电压,电流的振幅分别介于各自波腹点和波节点之间。
PnEednc
根据上文电压驻波比的定义,即电压波腹点和波节点的比值,我们能够得到电压驻波比的公式:
驻波比是表示传输线上驻波成分大小的一个参数,当完全匹配时,没有反射波,驻波比为1,当全反射时,驻波比为无穷大。
PnEednc
我们通过上文的介绍得到了驻波比与反射系数之间的关系。工程中常用的回波损耗RL是反射系数的dB形式。我们可以得到电压驻波比VSWR,反射系数
和回波损耗RL之间的关系。
这个表格也是很常用的,一样就能看到所对应的值。
在射频电路设计中,这三个参数表示的都是传输线的匹配状况,即入射波和反射波之间的关系。看图也更能理解dB的作用。
本文的参考书主要是《微波技术与微波器件》,更多详细内容,请阅读书本学习。
PnEednc
责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
进入专栏
分享到:
返回列表
上一篇:
什么是EVM?
下一篇:
6月动力电池市场:车企和电池企业如何和谐相处?
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
纯电动汽车是怎么陷入困局的?
2024年1-8月,中国新能源汽车总销量为593.6万,同比增长40%,渗透率达到了43.3%,而同期的燃油车销量为776.5万台·
拆解报告:HUAWEI华为随行WiFi5
充电头网采购了华为随行WiFi5随身WiFi,这款随身WiFi内置2400mAh电池,支持9小时续航,满足全天使用。随身WiFi支
沃尔沃新战略:纯电不是唯一的出路
沃尔沃电气化车型的销量已占全球总销量的约50%,包括纯电动汽车和插电式混合动力车型,截至2024年上半年,沃尔沃
拆解报告:倍思自带双线20000mAh移动电源PPXD220
最近,充电头网拿到了倍思推出的一款自带双线的20000mAh快充移动电源,内置1A1C接口,同时自带1C1L双快充线,C口以
拆解报告:苹果25W MagSafe磁吸充电器(港版)
本次拆解的新款无线充电器为港版,搭配30W充电器,能够提供25W的输出功率,可以在30分钟内为iPhone16和iPhone 16
拆解报告:“华强北Apple Watch”乔帮主HK10 Pro+智能手表
智研所近期对Apple Watch Series 10进行了详细的评测及拆解报道,为小伙伴们分享了其功能体验和内部结构配
拆解报告:小米自带线10000 33W移动电源
小米自带线10000 30W充电宝采用米白色块状设计,外观十分清新。其自带16.5cm长USB-C充电线,支持为外接的设备充
盘点特斯拉的电池供应策略:历史和未来
4680的路线,某种意义上认为是非中国化的技术路线,也不是中国电池企业目前全力探索的路线···
2023年国内五家电容类上市企业前五大客户销售总额情况
前五名客户的销售额在上市企业的财务报表中占据显著位置,其重要性不言而喻。它们不仅是企业营收的关键来源,还
意法半导体超级传感器助Sphere打造沉浸式体验,开启全新电影时代
本文将探讨 ST 定制图像传感器和 Sphere 的 Big Sky 摄像系统背后的技术细节,以及它们给电影未来带来
国内10家上市逆变器企业人才竞争力揭秘
在全球能源转型的浪潮中,逆变器行业作为新能源领域的关键环节,正蓬勃发展。逆变器企业的竞争优势不仅体现在技
拆解报告:3W特斯拉焕新版MODEL 3中控扩展坞
充电头网拿到了3W推出的特斯拉焕新版Model 3中控扩展坞,这款扩展坞安装在扶手箱中,通过点烟器接口供电。扩展
评测ASUS华硕VivoWatch 6
为了完整体验ASUS华硕VivoWatch 6健康手表,我爱音频网从该产品外观设计、连接使用、数据实测三方面进行了详
在钻咀和成品孔径之间,你会优先满足哪一项
工厂的钻咀规格,通常是按照0.05mm去递增,比如说0.50mm的钻咀,除非特殊定制,正常下一个钻咀的规格是0.55mm,而客户
特斯拉4680电池进展:三个月生产5000万颗
2024年9月15日,特斯拉宣布其第1亿颗4680电池正式下线,再次引发了电动汽车行业的广泛关注···
射频芯片的半壁江山之Qorvo的前生今世
今天我们一起来探寻一下Qorvo的前生今世,这个几乎占据射频IC半壁江山的公司到底出色在哪里?
拆解报告:天猫精灵X6智能音箱
在2024年5月,天猫精灵X6智能音箱正式发布,相较于上代X5时隔4年,无论是外观设计,还是功能配置上均带来了革新式升
MEMS行业迎来新篇章,xMEMS市场部副总裁Mike对话行业媒体
MEMS行业的发展前景广阔,MEMS技术广泛应用于消费电子、工业场景、汽车电子等领域。技术创新正在不断推动MEMS
丰田为什么没信心做好电动汽车:反复横跳的战略规划
由于全球电动汽车销量放缓,丰田汽车将其2026年全球电动汽车生产计划削减三分之一至100万辆,事实上丰田的电动
2024年8月激光雷达市场分析报告
中国企业在全球激光雷达市场中占据了主导地位,2024年中国企业的市场份额高达84%。中国激光雷达企业的成绩背
微通道液冷是什么?它又能如何优化电子设计
小型电子设备在冷却方面面临着独特的挑战。尽管随着芯片功能的增加,热管理问题日益受到关注,但设备尺寸越小,留
热泵背后的技术:智能功率模块
热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核
没有优质探头,示波器 ADC 分辨率再高也无意义
为了实现准确的信号测量,示波器必须通过探头连接到被测电子电路。探头发挥着重要作用,能够确保到达示波器的信
一个小改动,让铜线恒温器效率达94%
对于热线恒温器来说,虽然它也融合了传感器和加热器,但他们仍然与传递装置保持分离。因此,它在线性模式下工作时
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
EDA/IP/IC设计
制造/工艺/封装
物联网
安全与可靠性
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了