首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC Shanghai 2025
IC设计成就奖投票
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
倍仕达20W 1A1C充电器评测
时间:
2023-09-18
作者:
充电头网
阅读:
分享
扫码分享到好友
海报分享
此前,充电头网带来了倍仕达 20W 双Type-C口充电器,支持双设备快充;今天,带来的是倍仕达20W 1A1C充电器,依旧是集精致小巧、快速充电为一体的小型充电器,下面就看看其性能表现如何吧。
双口同时输出测试
双口同时输出时,C口输出功率为:8.61W,A口输出功率为:7.33W。
充电全程测试
针对倍仕达20W 1A1C充电器的充电全程测试,此次选用的测试设备为 iPhone 14,搭配苹果原装数据线进行充电,将充电器与电脑放置于25℃的恒温箱中,并接通电源,记录数据。
接通电源握手9V电压档位,前17分钟功率稳定在20W左右;第17分钟充电功率下降至16W左右并持续充电至第31分钟;随后充电功率下降至11W左右并持续充电至第42分钟;第48分钟握手5V电压,以6.5W功率继续进行充电;1小时04分钟进入涓流充电直至手机充满电,充电全程耗时约2小时08分钟。
绘制出折线图,可以看出倍仕达20W 1A1C充电器搭配苹果原装数据线为 iPhone 14 充电50%耗时25分钟,充电至80%耗时53分钟,完全充满则需要2小时08分钟左右。
空载功耗测试
充电器在插座上插着不使用的情况下是否会浪费电,具体会损耗多少电能,这是许多读者心中的疑问,待机功耗环节就是为了解答这个问题。将充电器插在贝奇功率计的插座上,并读取功率计上的数据,测试结果如下。
经过功率计测试,充电器在220V 50Hz 电压下的空载功耗为0.06W,换算下来一年损耗的电能约为0.526KW·h,若市电价为0.6元/KW·h,则充电器一年的电费约为0.32元左右。
再来看看在110V 60Hz 电压下的空载功耗,使用功率计读取的功耗0.032W,换算下来一年损耗的电能约为0.28KW·h,若市电价为0.6元/KW·h,则充电器一年的电费约为0.17元左右。
小结
经过上面的空载功耗测试,实行倍仕达20W 1A1C充电器在 220V 50Hz 电压环境下插在插座上不使用,一年下来消耗的电费约为0.32元左右;而在110V 60Hz 的电压环境插在插座上不使用,一年下来消耗的电费约在0.17元左右。
转换效率测试
充电器本质上是一种转换设备,过程中会有损耗,以热量的形式散发出来;充电器从插座上汲取的功率往往会比充电器标注的功率大一些;将实行倍仕达20W 1A1C充电器在220V 50Hz 和110V 60Hz 交流输入的情况下分别进行转换效率测试,下图是测试结果。
先来来看看110V 60Hz电压下 的转换效率,整体的转换效率在82-87%之间;其中转换效率最高的是12V1.67A档位,转换效率达到了86.88%;转换效率最低的是5V3A档位,转换效率为82.6%
再来看看220V 50Hz电压下转换效率如何,整体转换效率在83-88%之间;其中转换效率最高的是12V1.67A档位,转换效率达到了87.99%;转换效率最低的是5V3A档位,转换效率为83.94%。
整体来看,实行倍仕达20W 1A1C充电器在两类电压下的转换效率在同类充电器中属于主流水平。
纹波测试
由于充电器中采用开关电源,变压器次级输出的并非直流电,需要经过整流和电容滤波输出,也就是充电器输出会存在纹波;充电头网采用示波器测试充电器输出的纹波值,与行业标准进行比对,检测充电器的输出质量。纹波越低,充电器的输出质量就越高。
空载纹波测试
首先来看看110V 60Hz电压下的空载纹波表现如何,纹波峰峰值最高的是5V0A档位,纹波峰峰值为14.4mVp-p;纹波峰峰值最低的档位是12V0A,纹波峰峰值为10.4mVp-p。
再来看220V 50Hz电压下的空载纹波,纹波峰峰值最高的是5V0A档位,纹波峰峰值为18.4mVp-p;纹波峰峰值最低的是9V0A档位,纹波峰峰值为12mVp-p。
带载纹波测试
首先看看110V 60Hz电压下的带载纹波表现如何,纹波峰峰值最高的是9V2.22A档位,纹波峰峰值为33.6mVp-p;纹波峰峰值最低的是5V3A档位,纹波峰峰值均为25.6mVp-p。
再来看看220V 50Hz电压下的带载纹波,纹波峰峰值最高的是9V2.22A档位,纹波峰峰值为24.8mVp-p;纹波峰峰值最低的是12V1.67A档位,纹波峰峰值均为20.8mVp-p。
小结
YD/T 1591-2009 通信行业标准中充电器纹波要求是不高于200mVp-p,实行倍仕达20W 1A1C充电器在220V 50Hz、110V 60Hz的输入电压下,所有输出功率纹波峰峰值均不高于33.6mVp-p,整体来看表现优秀。
温度测试
充电器是一种转换设备,充电过程中会有损耗,以热量的形式散发出来,所以充电器会发热。实行倍仕达20W 1A1C充电器C口最高支持20W输出,将充电器放置于25℃的恒温箱中,以12V1.67A负载一小时后采集充电器表面的温度。
首先看看在220V 50Hz 电压输出下充电器温度表现如何。
一小时后,使用热成像仪拍摄充电器表面最高温度为57.5℃。
使用热成像仪拍摄充电器另外一侧表面最高温度为56.5℃。
下面看看在110V 60Hz 电压输出下充电器温度表现如何。
一小时后,使用热成像仪拍摄充电器表面最高温度为56.4℃。
使用热成像仪拍摄充电器另外一侧表面最高温度为57.8℃。
将温度数据汇总成表格,220V 50Hz 电压下的最高温度在57.5℃,110V 60Hz 电压下的最高温度在57.8℃。
将数据绘制成柱状图,可以看出实行倍仕达20W 1A1C充电器在220V 50Hz、110V 60Hz 电压下的输出时的最高温度为57.8℃,充电器负载时的最高温度满足IEC国际电工委员会IEC62368与新国标GB4943.1 2022对电子电气设备测试中,温度不高于77℃的要求。
充电头网总结
倍仕达20W 1A1C充电器采用细纹磨砂处理的 PC 材质外壳,各面板边缘圆润过渡,手感丝滑;在性能方面,倍仕达20W 1A1C充电器依旧支持最高12V输出电压,PD 20W 输出。
在性能方面,充电器的 Type-C 支持 PD 20W快充,USB-A 支持 18W输出,实际的兼容性测试中,可以为主流手机提供较为理想的快充功率,满足用户出行时的充电续航需求。从实测结果可以看到,在220V 50Hz 市电空载、重载状态下,这款充电器不同功率输出档位下的纹波数值仅不超过34mVp-p;而转换效率在82% ~88%区间内,处于主流充电器的水准;温度方面,以20W功率极限满载1小时最高温为57.8℃,温控方面表现优异,实际使用时将会更低。
整体来看,倍仕达 20W 1A1C 充电器同样拥有小体积、轻重量的优势,同时,搭载的1*Type-C+1*USB-A 双端口能对双设备快速充电,输出稳定高效,出行便于携带,是一款适合用户差旅出行的小功率充电器。
责编:Ricardo
文章来源及版权属于充电头网,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
2
/
2
首页
上一页
1
2
阅读全文,请先
充电头网
数码设备充电技术及其周边配件(充电头、充电器、充电线材、移动电源及电芯、USB插排)评测、拆解。
进入专栏
分享到:
返回列表
上一篇:
保障下一代碳化硅(SiC)器件的供需平衡
下一篇:
拆解报告:宜家SJÖMÄRKE怀麦科5W无线充电器
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
评测:华为WATCH GT5
为了完整体验华为WATCH GT5,我爱音频网从该产品外观设计、连接使用、数据实测三方面进行了详细测试与记录·
智能手机快充渗透率创历史新高!
充电头网通过统计了解到,2024年主流手机品牌累计推出166款智能手机,同时手机快充渗透率达 96%,仅7款百元机无快
拆解报告:希辉达35W带伸缩线氮化镓充电器
希辉达35W带伸缩线氮化镓充电器本质是配备双USB-C接口,但将其中一个设计成时下受欢迎的伸缩线,免去了用户日常
不可忽视的射频器件——射频连接器概述
无论是在射频系统的内部,比如不同的板级之间的射频信号的连接;抑或是射频系统之间的连接,都离不开射频连接器这
吉利第52周销量,6.22万!
2024年第52周,吉利集团旗下吉利、极氪、领克和银河四大品牌总销量为6.21万辆,其中吉利品牌贡献24548辆、银河2
拆解报告:极空间私有云Q2C
极空间私有云Q2C支持使用3.5和2.5英寸硬盘进行数据存储,支持单盘22T容量。私有云采用有线网络连接方式,为固定
拆解报告:米家USB-C智能香氛机-杯托版
小米米家智能香氛机采用触摸控制,通过触摸可以选择不同香型,并且由呼吸灯进行指示,使用直观便捷。香氛机具备两
拆解报告:联想thinkplus 30W迷你氮化镓充电器
联想thinkplus 30W迷你氮化镓充电器延续口红系列风格设计,整体小巧美观,充电器支持QC3.0/4+、FCP、SCP、AFC、
特斯拉:自动驾驶与人形机器人最新进展!
黄教主在CES演讲之后,他对于自动驾驶的判断和方法论引发了很多的讨论。我们把目光投向目前在领先的特斯拉,其
为什么负我不负她,PCB上的光学点是如何出轨的
板子上的光标点有异常,贴片时无法精准对位,可能要开治具焊接···
不升级板材,怎样能降低损耗,让眼图裕量变大?
一般我们layout时,trace要么走内层,上下都是参考层的带状线,要么走在表层,下面是参考层,上面是绿油和空气的微带
拆解报告:小米120W 3C1A四口氮化镓充电器
小米120W GaN四口充电器套装包含有1条1.5米长的C-C数据线,充电器外观仍然为家族风格设计。其配备可折叠国标
挪威2024年汽车销量:纯电车型地位巩固,插电快速下滑
挪威市场的独特性使其不仅是全球电动车发展的风向标,更是反思政策与技术平衡的重要案例···
下跌34%,保时捷在中国怎么了?
中国市场的高增长时代已经结束,对于保时捷而言,这不仅是一场短期危机,更是一次战略调整的契机···
Arm 驱动汽车未来,全面考量功能安全关键性
随着消费者对更安全、更智能且高度网联的汽车需求日益增长,汽车行业正经历快速变化···
CES|2025年有哪些AI眼镜值得买?
CES 2025 将 AI 智能眼镜推至聚光灯下,成为全场焦点。众多终端厂商及上下游产业链参与者纷纷亮剑,带来形态各
拆解报告:Verizon 45W USB-C快充充电器
Verizon 45W快充充电器为方块设计,配有折叠插脚,携带方便。产品配有指示灯,能够指示充电状态,同时支持45W输出功
评测:猛玛LARK M2无线麦克风
猛玛LARK M2隐藏式纽扣麦克风是一款无线领夹式麦克风,为全面了解猛玛LARK M2隐藏式纽扣麦克风的实际表现,我爱
11月希腊汽车市场,比亚迪闯入前十
希腊车市在2024年11月迎来销量回暖,但增长的动力显然来自新能源领域,尤其是以比亚迪为代表的中国品牌的崛起。
CES 2025 前瞻:基于 Arm 架构的技术将引领新一年创新
在 CES 2025 上,基于 Arm 架构的技术将备受瞩目,为新一年的创新奠定基础···
使用MSO 5/6内置AWG进行功率半导体器件的双脉冲测试
在本文中,宽禁带功率器件供应商Qorvo与Tektronix合作,基于实际的SiC被测器件 (DUT),描述了实用的解决方案··
嵌入式Rust:我们如今身处何方?
Rust对于一般应用开发来说很有意义,但对于嵌入式软件团队来说真的有意义吗?Rust如今的情况如何,它是否就是大家
毫米波雷达与音频技术重塑汽车驾乘新体验
汽车行业的发展正由两大创新领域主导:更为精准可靠的车内感知系统和高质量音频系统。传统方法如增加传感器或
631.2亿美元的市场,创新制造工艺将为柔性电子带来什么?
柔性电子设备的新型制造技术正在迅速涌现。有些人可能想知道它们是否比传统方法更好,以及它们什么时候会商业
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
制造/工艺/封装
EDA/IP/IC设计
安全与可靠性
测试与测量
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了