首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
国际汽车电子大会
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
IIC SZ 2024
国际汽车电子大会
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
国际汽车电子大会
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
IIC SZ 2024
国际汽车电子大会
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
详细解读ACLR和ACPR
时间:
2024-01-23
作者:
射频学堂
阅读:
分享
扫码分享到好友
今天射频学堂将和大家一起抽丝剥茧一个射频指标——ACLR。
在射频设计中,我们经常会遇到各种各样的系统指标,比如
EVM
,
VSWR
,NF,ACLR等等,这么多的缩写搞得人云里雾里,尤其是对很多刚入门的同学来说,不懂这些缩写的意思,有时候很难理解大牛们在说什么?
今天射频学堂再和大家一起抽丝剥茧一个射频指标——
ACLR
。
ACLR的定义
和其他的指标一样,ACLR也是一个英语全称的缩写——
A
djacent
C
hannel
L
eakage
R
atio, 看到全称之后是不是意思就明了了:
邻道泄露比
。
还有一个和它一样意思的射频指标,叫做
ACPR
,全称
A
djacent
C
hannel
P
ower
R
atio,
邻道功率比。
虽然名称不同,但是ACLR和ACPR所表示的意思是一样的,都是指主信道功率和相邻信道功率的比值。一般情况下,在基站设计中,常采用ACLR作为系统指标,而终端设计中,常采用ACPR作为系统指标。
在一个射频系统的工作频带OBW内,可以分为多个信道,每个信道载波的带宽称为CBW,当其中一个信道作为主信道工作的时候,由于系统非线性的影响,载波信号会泄露在相邻信道,主信道和相邻信道的功率比就是ACLR. 公式如下:
ACLR一般采用
dBc
的格式,所以呢,利用相邻信道功率(dBm)减去主信道功率(dBm)即可。
ACLR的影响
ACLR的定义非常简单明了,但是如果ACLR的指标不好,会对系统有哪些影响呢?
最直接的影响就是在主信道的相邻信道上有一个非常大的未知信号,如果附近的通信系统刚好工作在相邻信道上,那么这个未知信号就会对这个通信系统造成很大的干扰,这个巨大的干扰将会使这个通信系统带来比较大的影响,甚至无法工作。
另一方面,根据功率守恒定理,如果在相邻通道上有比较大的泄露功率,那么主信道的功率就会减小,通信系统的效率就会比较低,从而造成比较大的功耗问题。
ACLR的系统要求
所以呢,对于所有的无线通信系统,都有严格的ACLR的要求,尤其是在基站中,比如对于LTE 第四代通信系统,在 3GPP TS 36.141 version 9.12.0 Release 9 中对LTE发射机的ACLR有明确的要求:ACLR>44.2dBc
在5G NR中,对ACLR有了更高的要求,一般情况下,基站的ACLR要大于45dB。详见 3GPP TS 38.104 version 15.2.0 Release 15 中对ACLR的要求。
相应的,在UE端,应为发射功率更低,所以一般ACLR的要求会低一些,比如在3GPP TS 38.101-1 version 15.2.0 Release 15 给出的UE 端 ACLR的指标要求。
所以,对于ACLR的要求,不同的无线系统有不同的定义,同学们在设计的时候,一定要根据相应无线通信标准的定义,设计满足要求的射频系统。
如何改善系统的ACLR?
导致ACLR恶化的因素有很多,但是影响最大的还是PA的
非线性
。
因为邻道功率的泄露,本身就是由于系统的非线性引起的。
如下图所示,我们把一个载波信号分成几个子载波,由于非线性的影响,每两个子载波都会在载波的左右两侧各产生一个互调信号,这个互调信号就造成了相邻信道的功率填充。在ADI的一篇TA上,给出了ACLR和IMD的关系,如果已知子载波的功率和IMD的功率,就可以计算出ACLR的值。
如果功率放大器的输出功率过高,接近压缩点,那么在相邻通道中产生的IIP3和IIP5产品的功率也会过高。并且这些高功率IMD产物刚好落在相邻通道,就会导致高ACLR。这就是在最大功率下发生不良ACLR的原因。
在这种情况下,为了改善ACLR,首要任务是改善PA的线性,这时,可以通过降低PA的输出功率,是PA工作在线性区,或者通过DPD来改善PA在高功率下的线性度;或者呢,选用更高线性的PA。
第二点可以通过改善PA后端器件的损耗,比如滤波器,比如天线。这里的损耗既包括回波损耗,也包括插入损耗。
从上文降低PA输出功率可以改善ACLR这一点来说,后级滤波器天线的低插损,可以保证PA在输出低功率下也能满足系统的功率要求;另一方面PA输出口良好的匹配,不仅保证了信号功率能够最大的传输,也保证了反射功率对系统的影响最低,尤其是对DPD的影响。
这一点可以通过后级良好的级联匹配,以及选用低损耗的元件和PCB来实现。
第三点就是保证干净的PA输入。有源器件的非线性会产生互调失真,无论在PA端,还是在前面Tx中,都会产生。如果在前面Tx链路中就有比较大的互调失真,那么经过PA放大后,其对系统的影响将会变大。这种情况下,可以在PA前级加入信道滤波器来过滤前级产生的互调失真,以此来改善这个射频发射链路的ACLR性能。
参考阅读
(这些参考网站也是很不错的学习资源,复制网址粘贴在浏览器中即可打开阅读)
1,https://www.techplayon.com/aclr-acpr/;
2,https://www.techplayon.com/how-to-get-better-aclr-in-tx-chain/;
3,https://www.rfinsights.com/insights/design/transmitter/tx-aclr-breakdown/;
4,https://www.analog.com/en/analog-dialogue/articles/nonlinear-simulation-of-rf-ic-amplifiers-in-keysight-genesys-and-systemvue.html;
5,https://www.everythingrf.com/community/what-is-acpr-or-aclr;
6,https://www.rfpage.com/aclr-measurement-in-lte/;
7,https://www.analog.com/en/technical-articles/adjacent-channel-leakage-ratio-aclr-derivation-for-general-rf-devices.html;
8,https://www.rfwireless-world.com/Terminology/ACPR-vs-ACLR.html;
9,https://rfmw.em.keysight.com/rfcomms/refdocs/wcdma/wcdma_meas_aclr_desc.html;
10,https://ww2.mathworks.cn/help/comm/ug/adjacent-channel-power-ratio-acpr.html;
11,https://zhuanlan.zhihu.com/p/601477686;
12,https://windmissing.github.io/communications-technology/DPD_PA/2020-11-18-ACLR.html;
13,https://ieeexplore.ieee.org/document/9531697;
责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
进入专栏
分享到:
返回列表
上一篇:
消失的她,GERBER失踪之谜
下一篇:
拆解报告:美富达65W 2C1A氮化镓快充充电器
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
拆解报告:天猫精灵X6智能音箱
在2024年5月,天猫精灵X6智能音箱正式发布,相较于上代X5时隔4年,无论是外观设计,还是功能配置上均带来了革新式升
智能驾驶软硬一体化,会给行业带来什么冲击?
随着特斯拉的重磅加注和国内在智能驾驶的投资,软件和硬件的进步对于实现全面的智能驾驶至关重要···
拆解报告:usmile笑容加P20 PRO扫振电动牙刷
充电头网拿到了笑容加极简科技系列的P20 PRO电动牙刷,为冰河白配色。这款电动牙刷搭载了笑容加自研的伺服系
拆解报告:小米67W 2A2C氮化镓桌面快充插座
小米67W桌面快充插座自带1.4米长电源线,并具备两个新国标五孔插孔和一个新国标两孔插孔,支持2500W功率···
8月中国市场:比亚迪vs特斯拉
8月比亚迪和特斯拉的纯电动销量分别为15.45万和6.4万台,纯电动整体的增速都不快···
第35周:长城、长安和广汽的三家转型对比
从周度数据来看,三家企业都在努力转型中···
拆解报告:小米67W 2A2C氮化镓桌面快充插座
此前充电头网拆解过小米67W氮化镓快充插座Pro,相较市面上的其它快充插座产品,这款的独特之处在于配置一个HDMI
拆解报告:苹果25W MagSafe磁吸充电器(港版)
本次拆解的新款无线充电器为港版,搭配30W充电器,能够提供25W的输出功率,可以在30分钟内为iPhone16和iPhone 16
锦弦Apple Watch无线充评测
充电头网这次拿到了搭载锦弦9913芯片的Apple Watch无线充方案,下面就一起看看锦弦 Apple Watch无线充的实际
拆解报告:公牛67W 2A2C六位延长线插座
近期充电头网拿到了公牛推出的一款快充插线板,其不仅配置有6位AC插孔以及2A2C三个USB接口,支持热门20V3.35A 6
拆解报告:Google谷歌45W氮化镓快充充电器G21JN
最近充电头网拿到知名公司Google谷歌的一款45W快充充电器,与我们常见的45W快充产品相比,谷歌这款不仅设计的相
QCY H3 Pro头戴式蓝牙降噪耳机评测
QCY H3 Pro 头戴式蓝牙降噪耳机是一款头戴式蓝牙耳机,为全方位了解该耳机的实际表现,我爱音频网对该耳机进行
德国汽车工业的衰弱-整车篇(下):德系车企如何解局?
接上篇所说,我们来看看大众、宝马和奔驰在全球的整体应对策略。主要分为欧美和中国两部分来叙述···
2023年国内五家上市充电桩企业员工情况对比
员工是企业发展的核心力量,不同学历层次的员工在企业中发挥着各自的作用。本文将对国电南瑞、特锐德、许继电
8月中国汽车出口:保持增长势头
我们来盘点下2024年8月的中国汽车出口情况,走到年中往下半段,中国汽车出口继续保持增长势头···
拆解报告:ENPHASE ENERGY S280光伏并网微型逆变器
本期拆解的是一款ENPHASE ENERGY推出的S280光伏并网微型逆变器,这款逆变器支持60片的光伏组件,最大输出功率为
Rivian第三季度销量大幅下滑
Rivian在得到大众的支持以后,似乎看到了希望。然而,近期公布的第三季度销量数据显示,其仍然面临严峻挑战···
人形机器人身上也有这么多的射频模块
今天在云栖大会上,最吸引我的当属这些人形机器人了,各种关节的灵活度和稳定性,以及其智能化,原来也只是在小视频
评测,罗技户外蓝牙音箱UE WONDERBOOM 3
罗技UE WONDERBOOM 3是一款较为轻巧的户外蓝牙音箱,为完整体验该产品,我爱音频网从外观设、上手体验和数据实
2023年逆变器上市公司前五大客户销售额情况分析
在当今快速发展的新能源行业中,逆变器作为光伏系统的核心组件,承担着将直流电转换为交流电的关键作用。随着全
微通道液冷是什么?它又能如何优化电子设计
小型电子设备在冷却方面面临着独特的挑战。尽管随着芯片功能的增加,热管理问题日益受到关注,但设备尺寸越小,留
热泵背后的技术:智能功率模块
热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核
没有优质探头,示波器 ADC 分辨率再高也无意义
为了实现准确的信号测量,示波器必须通过探头连接到被测电子电路。探头发挥着重要作用,能够确保到达示波器的信
一个小改动,让铜线恒温器效率达94%
对于热线恒温器来说,虽然它也融合了传感器和加热器,但他们仍然与传递装置保持分离。因此,它在线性模式下工作时
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
EDA/IP/IC设计
制造/工艺/封装
物联网
安全与可靠性
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了