首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
2025中国IC设计成就奖提名
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
2025中国IC设计成就奖提名
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
为什么射频标准阻抗是50欧姆?
时间:
2024-09-29
作者:
射频学堂
阅读:
分享
扫码分享到好友
50欧姆对射频人来说,是一个最最最常见的阻抗。司空见惯,以至于见怪不怪。为什么是50 欧姆?30欧姆行不行?100欧姆呢?谁定了这个标准?
大家好,这里是
【
射频学堂
】
。
50欧姆对射频人来说,是一个最最最常见的阻抗。
司空见惯,以至于见怪不怪。为什么是50 欧姆?30欧姆行不行?100欧姆呢?谁定了这个标准?
今天我们就来聊一聊
50欧姆
的来龙去脉。
做了十多年的射频设计,终于发现,射频电路设计就是一个纠结的过程。对于我这种选择困难综合征的人来说更是如此。这种设计性能更好,那种设计体积更小,另一种设计成本更低。有没有又好又小又便宜的设计呢?我觉得应该有,所以每次都在寻找最佳方案。这种不断纠结的过程可以说贯穿整个项目的研发周期。
50欧姆
也是一个纠结来纠结去的折中。这个折中来自于哪里呢?我们一起看一下。
射频电路设计一个永恒的话题就是功率和功耗。如何传输最大的功率?如何把功耗降到最小?无耗只存在于理想中,有耗才是现实。
50 欧姆
就是在最大功率和最低损耗的平衡中得到的一个值。
拿我们最常用的同轴电缆做个例子。看一下 50欧姆 是什么样的一个阻抗值?
上图是同轴线的示意图,有内导体和外导体组成,因为内导体和外导体共轴,所以称作同轴线。同轴线传输的主要模式是TEM模,高次模除了TEM模的倍频,还有空腔导致的TE、TM模。我们所用到的同轴线都是在TEM模式下工作的,其场分布如下图所示:电场从内导体外表面到外导体内表面,磁场环绕内导体,在长度方向上周期分布。
稳定的工作模式,超级宽的工作带宽,超级低的传输损耗,同轴线在发明之初就得到了广大射频工程师的喜爱。比它的老前辈双线不知好了多少倍。所以在1930年开始,射频工程师们就开始寻找一种最佳的同轴线缆——最高的功率和电压传输,最低的损耗。可是研究越深入,工程师们愈发现,这种
最好
似乎不可能实现。为什么呢?
首先,最大的功率容量对应的阻抗是30欧姆,而最大的电压对应的阻抗是60欧姆。这两者就差了很多大。如下图所示
更为重要的是,最小损耗对应的特征阻抗更高,是77欧姆。
这三者相差甚远。不信的话,你阻抗匹配试试,看看回波变化有多大?这和50欧姆也没什么关系啊。折中就在这里啦。工程师喜欢平均,最大功率阻抗和最低损耗阻抗的算术平均是
53.5欧姆
,是不是接近50啦? 还有一个几何平均是
48欧姆
。就是说,48欧姆到53欧姆这个阻抗范围,射频工程师都是可以接受的,不会影响太多的功率容量和信号损失。因此呢,50欧姆这个值就诞生了。慢慢成为了射频设计的一个标准值。
这就是50欧姆的由来。当然在一些特定场合,75欧姆和30欧姆也会用到的。
定这个阻抗标准有什么好处呢?
除了上文所说到的功率和损耗的折中,更重要的是,50欧姆是射频器件的一个端口标准。一个射频系统由很多个射频模块组成,而我们在设计单个射频模块时,只要把端口设置成50欧姆,这样系统集成的时候,端口就很容易实现匹配,不至于驴头不对马嘴,单个模块天下无敌,合到一起烂到掉渣。
当然这也只是理想情况,实际电路设计中我们很难做到完全50欧姆。比如我们端口回波损耗有时候只能做到10dB。但是记住,这个10dB的回波,只是针对端口阻抗50欧姆来说的,换个阻抗,性能变化很大。这个50欧姆端口阻抗就是我们测试线口的阻抗,所以测试前,要进行校准,确保测试线口是50欧姆。
对于同轴线,有几个重要的参数公式需要牢记。
1,阻抗公式
其中,b是外导体半径,a是内导体半径。
对于空气同轴线,50欧姆对应的内外导体半径比是
2.302
. 这个值建议牢记心中,因为会经常用到。而75欧姆对应的内外导体半径比是
3.5.
这个在滤波器设计中比较常用。
外导体越粗,阻抗越高,内导体越粗,阻抗越小。这个在糖葫芦低通里面特别明显,如下图所示,它的高低阻抗就是靠改变内导体的粗细来实现的。
2,截止频率公式
这个截止频率就是同轴线中工作的最低高次模频率。我们上文说过了,同轴线可以在很宽的频带内只传输TEM模,第一个高次模 TE11模的截止频率和内外半径成反比,如上文公式。对于一个特征阻抗为50欧姆的同轴传输线,D和d的关系就定下来了。很直观的可以看出来,同轴线的直径越大,截止频率越低。填充的介质介电常数越高,截止频率越低。这个在线缆、接头选择上尤为重要。通常线缆和接头的截止频率要低于这个理想的截止频率,通常为90%左右。
下图给出了常用射频接头和线缆的工作频率。
更多相关学习资料下载,请在公众号发送消息:50欧姆同轴线
参考阅读资料
https://www.arworld.us/resources/Guide-to-RF-Coaxial-Connectors-and-Cables.asp
https://www.translatorscafe.com/unit-converter/uz-Latn-UZ/calculator/coaxial-cable/
https://www.rfcafe.com/references/electrical/coax.htm
https://www.microwaves101.com/encyclopedias/coax-loss-calculations
https://resources.altium.com/p/mysterious-50-ohm-impedance-where-it-came-and-why-we-use-it
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/the-50-question-impedance-matching-in-rf-design/
责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
进入专栏
分享到:
返回列表
上一篇:
评测,FIIL GS Lite开放式蓝牙耳机
下一篇:
2023年国内电容类上市公司业务出海情况
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
铃木汽车财报:日系车企一枝独秀,利润率超丰田
2024财年上半期,铃木汽车以11.7%的营业利润率创下同期历史新高,领先于丰田的10.6%、本田的6.9%和日产的0.5%·
长安集团第49周,小幅增长
2024年12月2日至12月8日的销量数据显示,长安品牌依旧牢牢占据市场领先地位,其多个核心车型在各自细分市场中表
拆解报告:正浩RIVER 3 300W 245Wh氮化镓户外电源
正浩RIVER 3户外电源内置245Wh磷酸铁锂电池,内置的双向逆变模块支持300W充电功率,支持300W输出功率,升维驱动支
拆解报告:Soundcore声阔A25i真无线耳机
Soundcore声阔A25i真无线耳机在外观方面,充电盒采用了轻巧设计,标配时尚编织挂绳,提供便捷携带。耳机采用了豆
展望2025汽车行业:AI、智驾的两大战役打响
随着智能驾驶技术的快速迭代,2025年将成为AI智驾技术发展的关键年份。在这个被定义为“AI智驾元年”的新时代
日系第48、49周:每周6-8万
11月中旬至12月初,日系品牌汽车的销量数据为观察市场动态提供了重要参考···
叩问2024,中国汽车明年走向何方?——技术篇
2024 - 2025年是中国汽车行业的技术竞争是越来越白热化了,当然AI的成分更高,硬件的部分开始进入打磨期!
欧洲11月汽车销量深度分析:纯电还有戏吗?
2024年11月欧洲汽车销量87万,市场整体下滑1.9%,全年累计销量972.6万台,整体销量不如预期···
拆解报告:Baseus倍思MC1开放式耳机
Baseus倍思MC1开放式耳机在外观设计方面,充电设计圆润,体积轻巧,便于携带。耳机采用了耳夹式设计,耳夹内嵌柔软
美国自动驾驶监管“转向”:Robotaxi迈向普及之路?
随着美国政府白宫领导人的切换,Elon Musk的影响力扩展到了自动驾驶技术监管领域···
蔚来ET9的数字架构有什么特别之处?
蔚来的这套架构有多先进?为什么蔚来要开发这套架构?架构的优缺点和发展潜力如何?
拆解报告:EDIFIER漫步者M100 Plus便携式蓝牙音箱
EDIFIER漫步者M100 Plus便携式蓝牙音箱外观设计时尚个性,体积轻巧,使用便携。圆形机身出音孔盖板采用柔韧织物
德系豪华车第51周销量
2024年12月16日至12月22日,德系高端豪华车市场迎来销量高峰···
奇瑞集团第49周:3.7万
奇瑞集团旗下各品牌在市场中呈现出不同的发展态势···
拆解报告:酷态科电能块CP133L
酷态科电能块CP133L标称容量10000mAh,采用灰白双色嵌套设计,配备1个USB-C和一个USB-A接口,并自带一根C口自带线
拆解报告:联想thinkplus 20W 1A1C双口快充充电器
联想thinkplus 20W双口快充充电器为经典直板造型设计,机身黑色配色,壳体表面磨砂、亮面撞色设计,整体质感很足
拆解报告:SmallRig斯莫格气垫麦克风
斯莫格气垫麦克风在外观方面,采用了类似“气垫”的圆形设计,机身采用烤漆质感,搭配IML工艺设计的装饰面板,整机
11月希腊汽车市场,比亚迪闯入前十
希腊车市在2024年11月迎来销量回暖,但增长的动力显然来自新能源领域,尤其是以比亚迪为代表的中国品牌的崛起。
11月哥伦比亚销量回暖,中国品牌抢眼
2024年11月,哥伦比亚新车市场表现出回暖趋势,销量同比增长17.7%,达到21,848辆,年初至今销量增长5.3%,达到175,861
MathWorks 利用新质生产力工具加速工程教学的变革
全球领先的数学计算软件开发商 MathWorks今日宣布,其 MATLAB® 和 Simulink® 平台在中国的高校教育中
人工智能前沿|2025 年影响工程的顶级趋势
想要在人工智能竞赛中保持领先的工程领导者应该关注四个关键领域的进步:生成式人工智能、验证和确认、降阶模
高熔断电流保险丝:不得不说的二三事
如何制造数百安培的保险丝?它们的封装是什么样的?当电流达到这些水平时,保险丝是否会按比例变大?
测评一款用电池的Energizer Vision 260头灯
当停电、装修以及紧急情况下,有一个头灯就会变得很方便,因为它可以照亮我们想看的地方···
使用手持式频谱分析仪,借助高级软件捕获难以识别的射频信号
本文让我们一起来探讨每种触发器的工作原理,以及它们如何助您更好地进行射频故障排除···
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
人工智能
制造/工艺/封装
EDA/IP/IC设计
安全与可靠性
物联网
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了