首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
IIC Shanghai 2025
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
成都低空经济大会
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
IIC Shanghai 2025
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
为什么说AHB是机器人充电器最佳拓扑架构?
时间:
2025-03-18
作者:
充电头网
阅读:
分享
扫码分享到好友
海报分享
在工业4.0与智能服务机器人规模化落地的浪潮下,高功率密度、快速响应的电源管理系统已成为机器人的核心部件···
mKoednc
前言
在工业4.0与智能服务机器人规模化落地的浪潮下,高功率密度、快速响应的电源管理系统已成为机器人的核心部件。
图源:宇树机器人
随着协作机器人、AMR等场景对续航与作业效率的需求激增,“超级快充”技术正从消费电子领域向机器人产业加速迁移。而传统电源架构因动态响应不足、电压调节范围受限及体积效率瓶颈等缺陷,在面对机器人电池包对高精度、大功率充电的要求时逐渐力不从心。
于是就有人将目光放到了AHB(不对称半桥)拓扑架构之中,同时结合高压快充协议,可有效解决大功率、高精度、智能化充电难题,推动机器人产业向更高效、更安全的方向发展。
机器人电池包未来发展趋势
为什么说 AHB+高压快充协议的组合是未来大功率充电器的最佳电路架构呢?这是由于目前在智能硬件与机器人领域,带有电池包的受电端正朝着
双向通讯
、
电压可调
、
大电流
三大核心趋势演进。
首先,
双向通讯
是保障充电过程智能化的关键。通过快充协议实时双向通信获取电池包的电压、温度等数据,动态调整输出参数,并内置SHA256校验算法,确保信息交互的安全性与稳定性。
其次,
电压可调技术
突破传统方案的局限性。传统LLC架构因输出电压固定,难以匹配机器人电池包的高压需求,而AHB拓扑支持3.3-60V宽范围输出,结合快充协议的10mV级电压步进调节,可精准适配不同设备中电池包的CC-CV充电曲线。此外,移动AI充电机器人通过实时调整电流和电压,进一步验证了动态调压在大功率直充充电场景中的必要性。
而
大电流
是提升充电效率的核心。当前物流机器人充电连接器已支持75A至以上的超大电流传输,例如史陶比尔的QCC系统可在高插拔寿命下实现快速补能,而MiR Charger 48V充电桩通过大电流输出,仅需半小时即可满足机器人6小时以上的满载运行。快充协议无理论功率上限的特性,则为未来更大电流需求提供了技术扩展空间。
AHB架构带来技术突破
AHB拓扑通过融合反激变换器与半桥结构的优点,在能量转换效率和系统体积优化上实现突破。简单来说,具有以下优势:
零电压/零电流开关(ZVS/ZCS)技术
:AHB通过谐振腔结构实现原边功率管零电压开通和副边整流管零电流关断,显著降低开关损耗,系统效率可提升至行业领先水平。
宽电压动态调节能力
:相较于传统LLC架构的固定输出电压,AHB支持
3.3-60V宽范围电压
输出
,可精准匹配机器人电池包的CC-CV模式充电需求,无需额外充电电路。
体积与成本优化
:AHB利用变压器与谐振电容协同储能,相比传统反激结构,体积缩小30%以上,同时次级侧采用单功率器件设计,也不再需要专用电路为电池包充电,进一步降低硬件成本。
以具体的案例来说,某品牌机器狗内部电池包容量超99Wh,传统充电方案因电压固定、温升过高易导致电池寿命衰减。而AHB架构通过动态调节电压与电流,配合高效散热设计,可将充电温度控制在安全阈值内,延长电池循环寿命。
高压快充协议 + AHB 带来智能化充电
当前,UFCS 融合快充协议与 PD 协议是市面上主流通用快充协议。通过以下表格技术维度对比可见,二者差异分明:PD 协议在场景应用上更显丰富灵活,支持多设备串联供电及角色互换;UFCS 融合快充协议则在核心性能层面优势突出,不仅具备更高电压、更大功率、更精细的控制精度,还拥有更优兼容性与更低成本特性,在适配 AHB 结构的应用场景中也能起到更好的作用。
图源:图片来自互联网
高压快充协议可与AHB拓扑架构相搭配,产生协同效应,为机器人充电带来“
智能调控
”与“
安全冗余
”的双重升级。充电头网也同样总结了三重优势:
电压精度自动控制
:在充电方案中采用AHB架构搭配快充协议芯片时,充电器与电池包之间形成了双向数字对话机制,协议芯片通过双向通信实时获取电池包的电压需求,并反馈至AHB控制器,实现“按需供电”。比如当电池包需要 48V 高压时,系统可实时动态调节输出高精度电压至目标值。
多重安全保护机制
:快充协议芯片内置过压、过流、温度检测等12项保护功能,结合AHB的负压采样和前沿消隐技术,可规避充电过程中的过充、短路、过热等风险。
快速部署与兼容性
:企业无需复杂编程,采购集成快充协议的芯片即可实现智能快充功能,支持多品牌设备兼容,降低开发门槛。
高压快充协议+AHB的组合不仅适用于机器人领域,还可拓展至无人机、电动工具、储能设备等大容量电池应用场景。随着快充协议将功率上限提升至240W及以上,AHB架构的高功率密度特性将进一步释放潜力,推动快充技术向更高功率演进。
充电头网总结
AHB拓扑与高压快充协议的深度融合,或正在重塑高功率充电技术的应用边界,这种架构不仅解决了传统方案在宽电压适配、动态负载响应及系统能效方面的固有缺陷,更重要的是通过协议层的智能交互,实现了能量传输从“单向供给”到“双向对话”的质变升级,助力全球机器人产业向更高水平发展。
mKoednc
责编:Ricardo
文章来源及版权属于充电头网,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
充电头网
数码设备充电技术及其周边配件(充电头、充电器、充电线材、移动电源及电芯、USB插排)评测、拆解。
进入专栏
分享到:
返回列表
上一篇:
聊聊100Gbps信号的仿真
下一篇:
拆解报告:小米10W电源适配器
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
出行服务的L4自动驾驶:全球市场概览
本文将深入分析美国、亚洲和欧洲三大区域在MaaS领域的技术布局、市场动态和政策导向,探讨其战略路径与面临的
四分之一波长传输线的原理及应用
在射频设计中,四分之一波长传输线是一种非常重要的概念,广泛应用于阻抗匹配、信号传输和高频电路设计中···
宝马2024年财报:营收和利润双下降
2024年宝马集团在全球市场尤其是中国市场面临销量下滑和利润压缩的挑战,传统豪华品牌在电动化、智能化浪潮下
史上最详细的射频收发信机架构解析!
在当今数字化时代,无线通信已渗透到生活的各个角落,从日常使用的手机、Wi-Fi 设备,到先进的卫星通信、雷达系统
拆解报告:SHOKZ韶音OPENCOMM 2通讯蓝牙耳机
SHOKZ韶音OPENCOMM 2通讯蓝牙耳机在外观方面,采用了后挂式的人体工学设计,能够很好的平衡耳机重量,提升稳定性
同样与心脏相连,为什么静脉血管感觉不到心脏的跳动?
静脉血管为什么感受不到心脏的跳动呢?是呀,静脉血管也和心脏相连,既然动脉能够感受到脉搏,可是我们触摸手上的静
拆解报告:华为智选Brovi 5G Mobile WiFi Pro 5
华为智选Brovi 5G Mobile WiFi Pro 5随身WiFi内置7000mAh大容量电池,支持华为SCP超级快充为自身充电。随身Wi
2024年3月主要车企销量盘点
2025年3月,各家车企的销量盘点,我们根据集团来区分。集团层面主要包括比亚迪、吉利和奇瑞···
拆解报告:beyerdynamic拜雅AMIRON 300真无线降噪耳机
beyerdynamic拜雅AMIRON 300真无线降噪耳机在外观方面,具有着独具特色的设计。方形充电盒,质感细腻亲肤,体积小
日本汽车市场2025年2月:销量增长18.7%
2025年2月,日本新车市场以18.7%的增长展现出从生产中断中恢复的强劲势头,丰田和大发的强势反弹成为亮点。丰田
意大利2025年2月:低迷中的变革
2025年,意大利汽车市场在低迷中孕育着变革。销量下滑、经济压力与电动化转型并存,传统巨头菲亚特面临达契亚和
拆解报告:摩米士70W 3C2A氮化镓旅行充电器
摩米士70W氮化镓旅行充电器支持多种规格插脚切换使用,可以方便携带去不同国家地区旅行,解决不同规格插脚、电
拆解报告:RCA多功能钟控收音机
RCA多功能钟控收音机在传统功能单一的钟控收音机基础上,增添了蓝牙连接和无线充电功能,搭配手机使用更加便捷,
Arm 携手 Stability AI,通过 Arm Kleidi 实现端侧音频生成
想象一下,你正在智能手机上编辑视频,需要为其添加合适的音效;或是你想要生成自定义声音,用于设置铃声、闹钟或发
奥迪2024财报分析:转型阵痛,怎样破局?
奥迪2024年财报营收利润双下滑与燃油车市场的萎缩,2025年奥迪计划营收675亿-725亿欧元,利润率7%-9%,20款新车的
理想汽车2024年财报:增收不增利
理想汽车2024年的财报是一张矛盾的答卷,营收与交付量的双突破也是理想汽车微操的胜利,如何保持在20万以上持续
土耳其2025年2月:特斯拉与比亚迪抢眼
2月土耳其汽车市场虽同比下降14.4%,但电动车热潮和品牌竞争的活力不容忽视···
拆解报告:JBL FLIP7便携式蓝牙音箱
JBL FLIP7便携式蓝牙音箱在外观方面,延续了上一代的经典设计,圆柱形造型,通过编织网布包裹,简约时尚且兼具耐磨
拆解报告:JBL QUANTUM BEAM真无线降噪游戏耳机
JBL QUANTUM BEAM量子风暴真无线降噪游戏耳机在外观方面,设计非常独特。圆角方形充电盒,设计有格栅式“悬窗”
2025年第11周新能源周销量:同环比上升!
2025 年第 11 周(3.10 - 3.16)乘用车的销量数据不错,可以感受整个汽车市场往乐观的变化:市场终端零售量达 41.86
台积电2nm工艺即将量产,苹果A20芯片可能才会上?
去年12月,台积电在IEEE国际电子元件会议(IEDM)上正式推出了2nm工艺,如今有消息称,台积电已经顺利完成了2nm试产阶
LM317拓扑再升级,升压预调节器让效率进一步提升
此设计实例将LM3x7可调稳压器与PWM DAC集成在一起,形成一个可编程的20V、1A电流源···
电力电子科学笔记:电子学中的SDE框架
SDE是“随机微分方程”的缩写,这是一个适用于电力电子领域的框架,特别是噪声的仿真和分析···
碳化硅技术赋能EA10000系列电源的技术解析与优势对比
面对测试大功率产品的市场要求,EA需要开发输出功率更大、输出电压更高、以及有助于减小测试系统体积并降低能
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
无线技术
制造/工艺/封装
人工智能
EDA/IP/IC设计
安全与可靠性
测试与测量
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了