广告

PCMC DC-DC转换器斜率补偿

2018-01-05 Sergio Franco 阅读:
DC-DC转换器斜率补偿这一概念很难完全掌握,文章以降压转换器为例进行阐述,解释为什么会发生亚谐波振荡,说明斜率补偿如何影响输入和输出端口电压变化的稳定性。这对不太熟悉峰值电流控制的工程师非常有用。

多年来,我遇到过许多没机会充分掌握DC-DC转换器斜率补偿概念的工程师。我将以降压转换器为例,尝试澄清这个概念。图1说明了降压转换原理。开关以频率fS在源VI和地之间切换。相应周期为TS= 1/fS,开关处于“向上”位置的TS部分表示为DTS,其中D是占空比(0 < D < 1)。对fS= 100kHz和D = 0.25的电路进行PSpice仿真得到图2的波形。将电路看作低通滤波器,我们注意到,在初始瞬态之后,电路达到一种稳定状态,VO稳定在3V左右,虽然有少量纹波。如果将D提高到0.5,VO将稳定在6V左右;如果将D提升到0.75,VO将稳定在约9V。sIwednc

DI2-F1-201801

图1:(a)降压转换原理(fS和D表示开关切换的频率和占空比);(b)VO是D的函数。sIwednc

sIwednc

事实上很容易看出,VO稳定在方波(图1中vsw)的平均值附近,其中:sIwednc

DI2-E1-201801sIwednc

由于0 < D < 1,很明显电路可以作为一种分压器,不管负载RL所需的电流如何,公式(1)都保持不变。最初,电感电流的一大部分对C进行充电,电路一旦达到稳定状态,电容电流将平均为零,因此电感提供的平均电流IL等于负载要求的平均电流IO。在上面的例子中,IL= IO= VO/RL= 3A。sIwednc

DI2-F2-201801

图2:在fS = 100kHz和D = 0.25的条件下,图1电路的PSpice波形。sIwednc

sIwednc

降压转换器最流行的应用是VO的稳压调节。为了进行调节,图1的电路必须包含一个控制器来感测VO,并不断调整D,使VO保持在规定值,而不管VI会如何变化。不用说,控制器是个负反馈系统。图1中的R、L、C值被精心选择用于临界阻尼瞬态,但所使用的RLC电路并不一定是临界阻尼,因此控制器应能提供足够的相位裕度以确保足够的动态调节范围。sIwednc

控制器如何调整D?控制器有两类:电压模式和电流模式控制器。下面将讨论电流模式控制器下面的一个常见类型——峰值电流模式控制(PCMC),图3是它的一个示例。为感测电感电流iL,电路使用一个小串联电阻Rsense,其压降由具有ai增益的放大器放大。该放大器将iL转换成电压RiiL,其中:sIwednc

DI2-E2-201801sIwednc

Ri(单位为V/A或欧姆)是电流-电压转换的整体增益。为感测输出电压VO,该电路使用分压器R1-R2产生电压ßVO,其中:sIwednc

DI2-E3-201801sIwednc

DI2-F3-201801

图3:不带斜率补偿的PCMC降压转换器的电路原理图。sIwednc

sIwednc

该系统的核心是误差放大器EA(高增益放大器),它将ßVO与参考电压VREF进行比较,并输出使其差值接近零所需的任何电压vEA,从而给出:sIwednc

DI2-E4-201801sIwednc

一旦VO达到稳定状态,电路工作如下:sIwednc

当一个时钟脉冲置位触发器时,开始一个周期。这将关闭Mp开关,使vSW=VI。在该周期的这一部分(在图4中表示为DTS),电感器电流iL以斜率Sn上升,由iL-vL电感法则掌控,或Sn=diL/dt=vL/L。在这段时间,我们得到vL=VI– VO,所以:sIwednc

DI2-E5-201801 sIwednc

DI2-F4-201801

图4:峰值电流模式控制(PCMC)中的稳态波形。sIwednc

sIwednc

回到图3,我们观察到CMP比较器连续地将电压RiiL与电压vEA进行比较,一旦RiiL达到vEA,CMP会复位触发器。两边除以Ri,相当于说,一旦iL达到这个值,CMP就动作:sIwednc

DI2-E6-201801sIwednc

这样,我们仅以电流形式就可以显示一个周期,如图4所示。现在,复位触发器打开Mp开关,同时关闭Mn开关,使vSW= 0。在表示为(1–D)TS的周期其余部分,我们有vL=0–VO,所以iL以Sf的斜率下降,因此有:sIwednc

DI2-E7-201801sIwednc

新的周期在下一个时钟脉冲到来时开始。sIwednc

未补偿的PCMC的两个缺陷

图3所示电路存在两个缺陷。第一个缺陷如图5所示,是将VO调节为3.0V的转换器设计(为简单起见,假设周期在t = 0时开始)。图4a示出了在VI=9V条件下,稳态电感器电流iL和其平均值IL,对应于D = 3/9 = 1/3的占空比。假设现在VI下降到4.5V,则对应D = 3 / 4.5 = 2/3的占空比。假设vEA没时间发生显著变化,那么平均电感器电流iL将增加,如图5b所示。这是因为当下坡Sf在-3/L保持恒定时,上坡Sn从(9-3)/L减小到(4.5-3)/L,即从6/L减少到1.5/L。sIwednc

随着iL增加,VO也随之增加,表明稳压不够。sIwednc

DI2-F5-201801

图5:图3电路中两种不同占空比的电感电流。sIwednc

sIwednc

第二个缺陷是称为次谐波振荡的不稳定形式,当D>0.5时会产生这种不稳定。图6显示了周期开始时电感电流扰动il(0)如何在周期结束时演化为扰动il(TS)。例如,扰动可能由前一周期中比较器失能引起。借助简单的几何,我们可以得出il(0)/△t = Sn和il(TS)/△t = Sf。消除△t,得出:sIwednc

DI2-E8-201801sIwednc

公式表明:sIwednc

(a)il(TS)的极性与il(0)的极性相反;
(b)对于D < 0.5,在足够的周期数之后,其幅值将减小直至消失;但对于D>0.5,将趋于从一个周期增加到下一个周期,导致前述的亚谐波不稳定。sIwednc

DI2-F6-201801

图6:D>0.5时的次谐波振荡。sIwednc

sIwednc

斜率补偿

回来看图5,我们观察到,如果希望图5b保持与图5a相同的iL值,需要减小图5b的iEA值,以便“下压”iL波形,直到各IL对齐。那么, iEA需要减到多少呢?为了回答这个问题,需要画出三个不同D值所需的iL波形。如图7所示,我们从顶部绘制iL的下降斜坡开始,以相同的IL为垂直中心,并且全具有相同的斜率Sf=-VO/L。接下来,通过绘制上行斜坡来完成iL波形,如图7底部所示。最后,将这三张图叠加,如图8所示,并观察到峰值轨迹斜坡的斜率为Sf/2 = –VO/2L。sIwednc

DI2-F7-201801

图7:构建D = 0.25、0.5和0.75的补偿iL波形。sIwednc

sIwednc

DI2-F8-201801

图8:图7中峰值的轨迹是斜率为Sf/2的斜坡。 sIwednc

sIwednc

DI2-F9-201801

图9:在图3的PCMC降压转换器中引入斜率补偿。sIwednc

sIwednc

图9给出了修改图3的电路以实现斜率补偿的一种方法。该电路现在包含一个以fS频率工作的锯齿波发生器,从vEA中减去其输出vRAMP,产生iL所期望的峰值轨迹。使用斜率补偿,图5的波形如图10所示变化,其中iEA(comp) = (vEA– vRAMP)/RisIwednc

DI2-F10-201801

图10:图9电路在两种不同占空比时的电感电流。sIwednc

sIwednc

斜率补偿还消除了次谐波振荡,如图11所示,这是额外的好处。使用图形检查,我们观察到周期开始的扰动il(0)将导致更小幅值的周期结束扰动iL(TS),尽管D > 0.5(事实上,你可以认为,这适用于0 < D < 1的任何D值)。用一个形象的比喻,通过斜率补偿,我们实际上是用一块斜坡补偿之石杀死了两只捣蛋鸟(稳压不够和次谐波振荡)。图9中以三角形表示的运算放大器EA有两个重要功能:sIwednc

(a)驱动其反相输入电压尽可能接近非反相输入电压,以便近似等式(4);
(b)提供可确保整个系统规定相位余量的频率分布。sIwednc

这并非一款普通放大器,以它为题足够写一篇关于稳定性分析和误差放大器设计的博文了。 sIwednc

DI2-F11-201801

图11:斜率补偿可防止次谐波振荡(无论D值大小)。sIwednc

sIwednc

《电子技术设计》2018年1月刊版权所有,转载请注明来源及链接。sIwednc

20160630000123sIwednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Sergio Franco
Sergio Franco是多本书的作者,是一名退休的大学教授,不得已而进入模拟电子行业。Sergio Franco在意大利学习物理专业,毕业后获得了富布赖特奖学金,并作为研究生进入声名卓著的伊利诺伊大学ILLIAC III计算机项目小组工作...后来却发现数字方向的研究职位已经没有了,只剩一个没人感兴趣的模拟方向的职位。因此,Sergio Franco不得不坐在实验室里开始自学模拟知识(晶体管、运算放大器、数据转换器、对数放大器和模拟乘法器)。Sergio Franco的物理背景使他能够用物理视角看待电路,而必要时数学只是一种更严格的验证工具。他用所学的模拟专业知识来设计实时作曲的电子系统(SalMar Contruction)。获得博士学位后,Sergio Franco离开了学术界,并在1980年重回到学术界,致力于培养模拟工程师,期中数百人现在在硅谷工作。除了写书,教书也一直是Sergio Franco最喜欢的职业。欲了解更多关于Sergio Franco的信息,请访问http://online.sfsu.edu/sfranco。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 从一个二十年前的电路开始,改造面包恒温发酵器 最近,读者John说他需要一种方法来控制发酵面团的温度,我很高兴他可能会考虑将我的TBH电路应用于解决他的问题,但在这种情况下,这确实有点小题大做。因此,我开始思考,是否有一种更简单的拓扑结构可以像TBH电路一样解决他的面团发酵问题,同时节省一些成本和精力···
  • 将锂金属电池寿命提高750%,竟然只需要“水”? 随着新能源汽车、移动设备等领域的快速发展,高性能电池的需求日益旺盛,锂金属作为新一代阳极材料,因具有高能量密度、轻量化等优点,备受关注。然而,锂金属电池所存在的寿命短、易起火或爆炸等问题,限制了其广泛的商业应用···
  • 按下ON还是按住OFF,将这种开关电路升级到交流电 2024年10月14日,Nick Cornford发布了一个名为“按下去再按上来,这种开关有哪些门道?”的设计实例(DI)。对于直流电压来说,这是一个非常有趣的DI,但对于交流电压呢?
  • 协同创新,助汽车行业迈向电气化、自动化和互联化的未来 汽车行业正处在电动化和智能化的转型过程中,而半导体企业站在这一变革的最前沿。这一转型带来了重大发展机遇,也带来了诸多挑战,需要颠覆性的技术以及更短的开发周期。加强半导体制造商、一级供应商和汽车制造商之间的合作,对于应对这些复杂情况及推动行业迈向电气化、自动化和互联化的未来至关重要···
  • 将单电源单端输入改成伪A/B类差分输出放大器 该放大器采用Barrie Gilbert的微混频器拓扑结构可将单端输入转换为单电源A/B类电流输出···
  • 加强低功耗FPGA的领先地位 在快速发展的技术领域,从以云端为中心到以网络边缘为中心的创新转变正在重塑数据的处理和利用方式···
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了